Predictions for the Observational Properties of Tidal Disruption Events: Super-Eddington Outflow & Accretion Disk

Linda Strubbe CITA Postdoctoral Fellow (Toronto)

Emission from Tidal Disruption Events

Having an idea about rate of gas falling back to the black hole $\dot{M}_{\rm fallback}$...

What are the accretion physics and radiative processes that tell us what we're likely to observe?

Emission from Tidal Disruption Events

Having an idea about rate of gas falling back to the black hole $\dot{M}_{\rm fallback}$...

What are the accretion physics and radiative processes that tell us what we're likely to observe?

Not as simple as $\nu L_{\nu} \propto M_{\text{fallback}} \dots !$

- What observing band?
- What radiative processes? In thermal equilibrium?
- What are temperature and area of emitting region?

Focus on optical/UV emission, for recent/upcoming transient surveys (GALEX, Palomar Transient Factory, Pan-STARRS, LSST)

The Bound Material: Fallback

Eddington rate: Radiation pressure (produced by accretion) balances Gravity (from the black hole)

The Bound Material: Fallback

As fallback rate declines with time, 2 Phases of Evolution:

- 1. <u>Super-Eddington fallback</u>: ~weeks - $\dot{M}_{fallback} \gg \dot{M}_{Edd}$ Physics is uncertain, but likely advective disk + powerful outflows
- 2. <u>Sub-Eddington fallback</u>: ~months - $\dot{M}_{fallback} \lesssim \dot{M}_{Edd}$ year Thin accretion disk

e.g., Evans & Kochanek (1989), Cannizzo et al. (1990), Ramirez-Ruíz & Rosswog (2009), Lodato et al. (2009), Guillochon & Ramirez-Ruíz (2012)

The Bound Material: Fallback

The Bound Material: Accretion disk

- debris shocks and circularizes
- forms steady accretion disk
- in time $t_{\rm visc} \ll t_{\rm fallback}$

- disk is optically thick
- supported by radiation pressure

Solve equations for disk structure:

Blackbody temperature

Sub-Eddington fallback rate $t_{photon diff} < t_{advect}$ emission declines with time

The Bound Material: Accretion disk

- multicolor blackbody peaks at ~100 eV ~ 100 Å

- while $\dot{M}_{\rm fallback} > \dot{M}_{\rm Edd}$, disk luminosity is constant at $L_{\rm Edd}$

- once $M_{\text{fallback}} < M_{\text{Edd}}$, disk cools and fades $L_{\text{bol}} \propto T^4 \propto \dot{M}_{\text{fallback}} \propto t^{-5/3}$ $L_{\text{optical}} \propto T \propto \dot{M}_{\text{fallback}}^{1/4} \propto t^{-5/12}$

 faint emission lines from photoionized surface of unbound debris

- fairly modest optical emission

Strubbe & Quataert (2009)

The Bound Material: Super-Eddington Fallback Phase

- High fallback rate → High density at pericenter
- Electron scattering traps photons. Matter is so dense that most photons cannot diffuse out.

Radiation pressure drives gas back outward.

The Bound Material: Super-Eddington Fallback Phase

- High fallback rate → High density at pericenter
- Electron scattering traps photons.
 Matter is so dense that most photons cannot diffuse out.

outflowing gas

BH

slim

accretion

disk

Radiation hydrodynamic sim. of BH feeding at $100 \dot{M}_{\rm Edd}$

(Ohsuga & Mineshige 2007)

Trapped heat should...

1. unbind gas and drive **outflow**

2. be dragged along with gas accretion disk into the BH The Bound Material: Super-Eddington Fallback Phase

Maybe also (separate) magnetically-driven relativistic jet

(e.g., Bloom et al. 2011, Metzger & Giannios 2011)

The Bound Material: Super-Eddington Outflows

- assume spherical geometry with density profile

 $ho(r) \sim \frac{f_{\text{out}} \dot{M}_{\text{fallback}}}{4\pi r^2 v_{\text{wind}}}$

Deep inside:

- photons are trapped by electron scattering \rightarrow adiabatic so $T\propto \rho^{1/3}$

At photosphere:

- lower density, so photons can escape
- photons likely have blackbody spectrum
- if blackbody: large radius, cool temperature
 - \rightarrow large optical luminosity

- As $\dot{M}_{\text{fallback}}$ and density drop, photosphere moves deeper in $\rightarrow T_{\text{phot}}$ rises while L_{bol} drops The Bound Material: Super-Eddington Outflows Photometric Signature: Blackbody Continuum

e.g., $M_{\rm BH} = 10^{6} M_{\odot}$ $R_{\rm p} = R_{\rm T}$ $h\nu$ (eV) 100 10^{44} t = 10 days $u \mathrm{L}_{\nu} \; (\mathrm{erg}/\mathrm{s})$ 30 days 10^{43} 100 days 10^{42} 100 1000 10000 (Angstroms)

at 10 days: $R_{\rm phot} \sim 1000 R_{\rm S} \sim 20 \,{\rm AU}$ $T_{\rm phot} \sim 3 \times 10^4 \,{\rm K}$ $L_{\rm optical} \sim 10^{43} \,{\rm erg/s}$! $M_{\rm AB} \sim -19$

Strubbe & Quataert (2009)

The Bound Material: Super-Eddington Outflows Photometric Signature: Blackbody Continuum

e.g., $M_{\rm BH} = 10^6 M_{\odot}$ $R_{\rm p} = R_{\rm T}$ $h\nu$ (eV) 100 10^{44} t = 10 days30 days $\nu \mathrm{L}_{
u}~(\mathrm{erg}/\mathrm{s})$ 10^{43} _ 100 days 10^{42} 100 1000 10000 λ (Angstroms)

at 10 days: $R_{\rm phot} \sim 1000 R_{\rm S} \sim 20 \,{\rm AU}$ $T_{\rm phot} \sim 3 \times 10^4 \,{\rm K}$ $L_{\rm optical} \sim 10^{43} \,{\rm erg/s}$! $M_{\rm AB} \sim -19$

First optical discoveries! SDSS: van Velzen et al. (2011) PTF: Cenko et al. (2012) Pan-STARRS: Gezari et al. (2012)

Strubbe & Quataert (2009)

accretion disk (optical -- X-ray emission) + unbound material (faint offset emission lines)

