Tidal disruption events from the first XMM-Newton Slew Survey

Pilar Esquej Centro de Astrobiologia (INTA-CSIC)

Richard Saxton, Stefanie Komossa, Andy Read, M. Sanchez-Portal et al.

Tidal disruption events and AGN outbursts

Outline

- Detection of tidal disruption events
 In X-rays using XMM-Newton slew data
- Determination of properties close to the outburst
 - Do they agree with previous candidates?
- Evolution of the events X-ray and optical follow-up
 - Do post-outburst optical spectra show any evidence of the disruption event?
 - Is the X-ray luminosity following the expected behaviour t-5/3 law?
 - Is the observed variability an isolated or recurrent event?
- Properties of the candidates (e.g. M_{B+}, released energy, accreted mass)
- Tidal disruption rate

The XMM-Newton Slew Survey Source Catalogue

- Shallow survey of the sky taking advantage of the time spent manoeuvring the telescope - intermediate position between pencil-beam looks and dedicated all-sky surveys.
- Cross-correlation with the RASS scientific validation of the slew catalogue.
- s highly variable sources previously classified as non active galaxies:
 - variability factors from 20 to 90
 - soft X-ray spectra
 - Soft X-ray luminosities from 1042-1044 erg 5-1

Candidate selection

- X-ray and optical follow up observations of all 5 of them.
- Three were discarded as TDE
 - strong optical emission lines
 - luminosity decline not compatible with TDE
 - we are investigating them in the context of AGN outbursts
- Two good candidates this talk!

- 5D55 J1323 and NGC 3599 with variability factors of 83 and 88 (~150 using ROSAT pointing) respectively.

SDSS J1323: Optical data

z= 0.087 Non-active galaxy

original data (5D55) stellar component nuclear emission

Pre-outburst spectrum

5D55 J1323: X-rays follow-up

XMM-Newton slew: no photons >2 kev

XMM-Newton ToO (4.5 ks)
 Bbody (kT=62eV) + Powerlaw (Γ=1.4)

X-ray light curve

NGC 3599: Optical data

- Z = 0.0028
- NELG Seyfert/LINER

Post-outburst spectrum

Follow-up observations at the NOT and the INT. Postoutburst spectrum did not show any evidence of the disruption event.

NGC 3599: X-ray follow-up

- XMM-Newton ToO (~4 ks)
 Swift Fill-in time (~4 ks)
 Chandra (~18 ks)
 Esquej et al. in prep. ■ XMM-Newton (~35 ks)

Bright source coincident with the centre of the optical position ■ Faint off-nuclear source at 3 arcsec (300 pc)

ULX within NGC 3599

- Low statistics: 35 counts
- No photons below 0.4 keV
- Hard spectrum:
 - power-law with $\Gamma = 1.5$
- $L_X = 3 \times 10^{38} \text{ erg } 5^{-1}$
- ULX in a low/hard state?
 - low luminosity, hard spectrum
 - A new (deeper) Chandra observation in needed.

NGC 3599: X-ray spectra

- XMM-Newton slew
 - Total counts: 50 cts (13 s)
 - Bbody (kT=95eV) or power-law ($\Gamma=3$)
 - $L_{o.2-2.okev} = 7 \times 10^{41} \text{ erg } 5^{-1}$
- XMM-Newton ToO
 - Total counts: ~450 cts (4 ks)
 - Bbody (kT=20 eV) + power-law $(\Gamma=2.8)$
 - $L_{o.2-2.0kev}=2.0 \times 10^{40} \text{ erg } 5^{-1}; L_{o.2-12kev}=2.2 \times 10^{40} \text{ erg } 5^{-1}$
- Chandra (nucleus)
 - Total counts: ~200 cts (20 ks)
 - Bbody (kT=22eV) + power-law with $(\Gamma=2.7)$
 - $L_{o.2-2.okev}=6.0 \times 10^{39} \text{ erg } 5^{-1}; L_{o.2-12kev}=6.6 \times 10^{39} \text{ erg } 5^{-1}$
- XMM-Newton
 - Total counts: ~1100 cts (36 ks)
 - Bbody $(kT=42 \text{ eV}) + power-law (\Gamma=2.7)$
 - $L_{o.2-2.okev}=3.7 \times 10^{39} \text{ erg } 5^{-1}; L_{o.2-12kev}=4.9 \times 10^{39} \text{ erg } 5^{-1}$

NGC 3599: X-ray data

Released energy:
$$\Delta E_{X} = \int_{t}^{\infty} L_{X}(t) dt$$

accreted
$$\Delta \mathcal{M} = \frac{\Delta \mathcal{F}}{\varepsilon c^2} \approx$$

$$\Delta \mathcal{M} = \frac{\Delta \mathcal{F}}{\varepsilon c^2} \approx \frac{\Delta \mathcal{F}_{\times}}{\varepsilon c^2}$$

Radius emitting
$$\mathcal{R}_{X} = \left(\frac{f_{c}^{4}\mathcal{L}_{X}}{\pi\sigma T_{bb}^{4}}\right)^{1/2}$$
 (Fer

Black hole mass:
$$M_{BH} = 1.66(\pm 0.24) \times 10^8 M_{sun} \left(\frac{5}{200 \text{ km s}^{-1}} \right)^{-1}$$

Source	ΔF_{κ} (erg)	$\Delta M (M_{sun})$	\mathcal{R}_{κ} (cm)	M_{BH} (M_{sun})
NGC 3599	7.1 × 10 ⁴⁸	4.0 × 10-5	$7.3 \approx 10^{22}$	1.3 x 106
5D55 J1323	7.6 × 2050	4.2 × 10-3	6.8 × 2022	2.2 × 106

$$\frac{N \text{ events}}{\int_{0}^{R_{max}} A(r)t(r)dr} = 2.4 \cdot 10^{-6} \text{ yr}^{-1} \text{ Mpc}^{-3} = 1.0 \cdot 10^{-4} \text{ galaxy}^{-1} \text{ yr}^{-1}$$

 Theoretical tidal disruption rate is ~10⁻⁴ -10⁻⁵ galaxy⁻¹ yr⁻¹ (wang & Merrit 2004)

$$G(\mathcal{M}_{bh}) = 7 \times 10^{-4} \, \text{yr}^{-1} \left(\frac{5}{70 \,\text{km} \, 5^{-1}}\right)^{7/2} \left(\frac{\mathcal{M}_{bh}}{10^6 \,\text{M}_{5un}}\right)^{-2} \left(\frac{\mathcal{M}_{*}}{\mathcal{M}_{5un}}\right)^{-1/3} \left(\frac{\mathcal{R}_{*}}{\mathcal{R}_{5un}}\right)^{1/4}$$

 Observed disruption rate from ROSAT ~10⁻⁵ galaxy⁻¹ yr⁻¹ (Donley et al. 2002)

Tidal disruption rate from slew survey lies in agreement with previous theoretical and observational predictions (Esquej et al. 2008)

Alternative scenarios

Discarded:

- Stellar objects: cannot reach so high luminosities
- HMBX and supernovae: present strong hard X-ray emission and L_X up to 10^{40} erg 5^{-1}
- X-ray afterglow of GRB: no detected and follows a t⁻¹
- Still possible for NGC 3599:
 - ULX within NGC 3599
 - Accretion disk instability
 - Variations in the intrinsic radiation, changes in covering factor of the absorbing gas

Conclusions: Tidal disruption events

- Two candidates detected by XMM-Newton (previously only 5 in Xrays with ROSAT)
 - high-state properties agree with previous detections (soft spectral shape, high luminosity, huge variability)
 - Unprecedented broad band X-ray data
- No significant spectral evolution X-rays and optical
- X-ray light curves declined as t^{-5/3}
- Tidal disruption rate agrees with previous predictions