Numerical study of dynamics and emission from a TDE-powered jet

Petar Mimica

Departamento de Astronomia y Astrofísica, Universidad de Valencia

Brian Metzger, Dimitrios Giannios Department of Astrophysical Sciences, Peyton Hall, Princeton

Miguel Angel Aloy

Departmento de Astronomia y Astrofísica, Universidad de Valencia

Outline

- I. Introduction and motivation: why 2D jet models?
- 2. ID versus 2D simulations: dynamics
- 3. Preliminary off-axis results
- 4. Summary

Jets powered by tidal disruptions

- complete tidal disruption of a Sun-like star may produce a powerful relativistic jet
- jet interacts with the CNM, decelerates and produces a radio transient

Giannios & Metzger 11; Metzger+12

2D study

I. 2D effects may become important early in the evolution2. We can study arbitrary observing angle

3. We can make prediction about jet detection/nondetection (power, CNM properties, timescales, frequencies)

RHD simulations of TDE jets

1

Physical model

$$L_{j}(t) = L_{j,0} \left(\max \left[1, \left(\frac{t}{t_{j,0}} \right) \right] \right)^{-5/3}$$

 $L_{j,0} = 5 \times 10^{47} \text{ erg s}^{-1}$
 $t_{j,0} = 5 \times 10^{5} \text{ s}$
 $\Gamma_{j,0} = 10 \qquad \theta_{j,0} = 0.1 \text{ rad}$
 $\Theta_{0} := \frac{P_{0}}{\rho_{0}c^{2}} = 10^{-2}$
TM EOS : $h(\Theta) = \frac{5}{2}\Theta + \sqrt{\frac{9}{4}\Theta^{2} + 1}$
(Mignone+ 05, de Berredo-Peixoto+ 05)
 $R_{j,0} = 5 \times 10^{16} \text{ cm}$

$$m_{\text{ext}}(R) = 3.33 \times 10^2 \text{ cm}^{-3} \left(\frac{R}{R_{j,0}}\right)$$

 $T_{\rm max} \approx 3$ years

Mimica, Giannios, Metzger & Aloy, in prep.

Technical details

 $\Delta r_{\rm 1D} = 10^{13} \ {\rm cm}$

$$\Delta r_{2\mathrm{D}} = 10^{14} \mathrm{\ cm} \quad \Delta \theta_{2\mathrm{D}} = 10^{-3} \pi \mathrm{\ rad}$$

- MRGENESIS code (Mimica+ 07, 09), equidistant grid, 2D resolution 25200 x 500
- 12.6 million numerical cells (jet resolved using 32 zones in azimuthal direction)
- 3300 snapshots stored (approx. every 0.4 days of lab frame time): for radiative transfer calculations

(de Colle+ 12 perform similar simulations)

RHD + emission

- codes: MRGENESIS (Mimica+ 07,09) for RHD + SPEV (Mimica+ 09, Tabik+ 11, 12) for the electron evolution and emission calculation
- observed radiation: synchrotron emission from shock accelerated electrons at FS and RS
- power-law distribution $N(\gamma) = N(\gamma_{\min}) (\gamma/\gamma_{\min})^{-p}$
- lower and upper cutoffs: $\gamma_{\min} = \frac{3P_{\text{sh}}}{\rho_{\text{sh}}c^2} \frac{m_p}{m_e} \frac{p-2}{p-1} \epsilon_e \qquad \qquad \gamma_{\max} = \left(\frac{3m_e^2 c^4}{4\pi e^3 B'}\right)^{1/2}$

•magnetic field: $B' = \sqrt{8\pi\varepsilon_{\rm th}\epsilon_B}$

- particle distribution evolution (synchrotron + adiabatic losses/gains)
- fast calculation: optically thin medium emissivity volume integral
- detailed calculation: radiative transfer (SSA)

ID evolution

Radio light curves

Instantaneous spectra

Instantaneous spectra

 10^{4}

 10^{3}

 10^2

 10^{1}

 10^{0}

 10^{-1}

 10^{-2}

1.00

0.90

0.80

0.70

0.60

0.40

0.30

0.20

0.10

0.00

 β 0.50

 ρ

Jet opening angle

ID versus 2D dynamics

Summary

- we perform ID/2D RHD simulations of TDE jets
- ID dynamics and emission dominated by FS/RS
- 2D dynamics influenced by the cocoon, differs substantially from ID at later times
- work in progress:
 - light curves for different θ_{obs} from 0° to 90°
 - jet simulations in different CNM profiles