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TDE model predictions
• (Rees 88; Evans & Kochanek 89; Li et al. 02; 

Strubbe & Quataert 09; Lodato et al. 09; …)

•RT = R✱ (M/M✱)1/3 ~ 20 M6-2/3r✱ m✱-1/3 
RS.
β= RT / Rp.

•tf ~ 3.3⨉106 β-3 M61/2 r✱2/3 m✱-1 s.

•Peak fallback rate ~ 0.5M✱/tf            
~ 10-7 β3 M6-1/2 r✱-2/3 m✱2 M⊙ s-1                  
~ 102 β3 M6-3/2 r✱-2/3 m✱2 ⨉ Eddington 
accretion rate (10% efficiency)!

(Rees 1988)
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Debris mass fallback rate
• Fallback rate is determined by stellar mass 

distribution over specific energy.

• For constant distribution (e.g., Rees 1988), 

• Early fallback rate depends on stellar structure.

Ṁfb / (t/tf )
� 5

3

(Lodato et al. 2009;  most recently 
Guillochon & Ramirez-Ruiz 2012) 

3



TDE observations

• Targets of transient surveys 
(Pan-STARRS, PTF, LSST, 
LOFAR, SARSIR, EXIST, …)

and confirms the identification of He II λ = 4, 686 Åemission. The observed flux ratio of
He II λ = 3, 203 emission to He II λ = 4, 686Åemission is 0.50 ± 0.10, measured using a
Gaussian fit to the λ = 3, 203Åline with a width fixed to that of the λ = 4, 686Åline, limits
the internal extinction to E(B − V ) < 0.08 mag (Supplementary Information). The He II
λ4, 686 line is still evident as an excess above the model in the later epoch (b), but it has
faded by a factor of ∼ 10 since 22 rest-frame days before the peak, the same factor by
which the ultraviolet continuum has faded during this time. The absolute flux scaling in the
later epoch is uncertain owing to obscuration by clouds on the date of the observation.

Figure 2
Ultraviolet-optical light curve. The GALEX NUV and PS1 gP1-, rP1-, iP1-, and zP1-band
light curves of PS1-10jh (with the host galaxy flux removed), plotted against logarithmic
time since the peak (top) and since the disruption (bottom). The curves (shown with solid
lines scaled to the flux in the GALEX and PS1 bands) were determined from the best fit
of the gP1-band light curve to a numerical model20 for the mass accretion rate of a tidally
disrupted star with a polytropic exponent of 5/3. For each of the four optical bands, we
independently performed a least-squares fit of the model for a 106M! black hole to the
light curve from −36 to 58 rest-frame days from the peak, with the time of disruption, a
vertical scaling factor, and a time stretch factor as free parameters. The GALEX and PS1
photometry at t > 240 rest-frame days since the peak is shown binned in time in order to
increase the signal-to-noise ratio. The dates of multiple epochs of MMT spectroscopy are
marked with an S, and the date of the Chandra X-ray observation is marked with an X.
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PS1-10jh

(Gezari et al. 2012)

NGC3599 SDSS J1323+4827

(Esquej et al. 2008)
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Swift J1644-57: a jetted TDE 

(Levan et al. 2011)
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Accretion rate = 
fallback rate?

• Accretion (viscosity) 
timescale << fallback time 
scale.

• Accretion rate evolution is 
driven by viscous spreading.

• And is affected by wind loss 
for an ADAF (advection 
dominated accretion flow) 
disk.

Viscous spreading of a ring of mass (Pringle 1981).
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TDE: Accretion disk 
with fallback

Fallback

rin rout

rf = 2 rT

r — Schwarzschild-normalized radius
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Viscous evolution of accretion 
disk

• Viscous spreading of a Keplerian disk with an infall (Lightman 74; 
Cannizzo et al. 90; Pringle 91; Tanaka 11; …)

• Σ - surface density; α - Shakura & Sunyaev viscosity parameter.

• For the case of ν ∝ Rn and S(R,t)=0:

• Σ ∝ R-n

• Rout ∝ t1/[2(2-n)]

•
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Viscous evolution of accretion 
disk

• Viscous spreading of a Keplerian disk with an infall (Lightman 74; 
Cannizzo et al. 90; Pringle 91; Tanaka 11; …)

• Σ - surface density; α - Shakura & Sunyaev viscosity parameter.

• For the case of ν ∝ Rn and S(R,t)=0:
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• For S(R,t)=const.:

ṀBH ⇡ Ṁfb(t)

(Metzger et al. 12)
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A spreading disk with 
fallback

ADAF

ṀBH(t) = Ṁvis(t) + Ṁfb(t)

Fallback

(Impact of wind loss to be included)

Ṁvis

(without fallback)
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Outline
• Is accretion rate equal to fallback rate?

• Accretion is driven by viscous spreading.

• What is the long-term evolution history of 

• What is n (ν ~ Rn) ?

• Impacts of wind loss and fallback on 

• Application to Swift J164449.3+573451.

• Precession of disk misaligned with BH spin.

ṀBH(t)?

ṀBH(t)
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Steady state disk equations
• Energy equation:                                                 

local heating = advective cooling + radiative cooling.

• If Qadv
- ≫ Qrad

- (ADAF), ν ∝ R1/2, →	 n= 1/2.

• If Qadv
- ≪ Qrad

- (Radiative), 

• when P ≃ Prad, ν ∝ R-3/2, →	 n= -3/2;

• when P ≃ Pgas, ν ∝ R3/5, →	 n= 3/5.

Q+
vis(⌫,⌃) = Q�

adv(⌫,⌃, P/⇢) +Q�
rad(⌃, T )

�! Ṁvis / t�
4
3

�! Ṁvis / t�
8
7

�! Ṁvis / t�
19
14
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Phase changes of disk
• Assuming P ≃ Prad ≫ Pgas,

• As accretion rate drops:

H

R
=

p
P/⇢
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t

Eddington-normalized accretion rate
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Impact of wind loss
• ADAF launches outflow (wind) up to min(rtra, rout) 

(Blandford & Begelman 99; Narayan et al. 00;...).

ṁ(r) / rs, with 0  s  1.

ADAF Radiative

rtra

• For a complete ADAF disk (n=1/2; without fallback):

loss of disk angular mom. via wind ⟹ 

⌃ / r�n+s, ṁ(r, t) = ṁ(r
out

, t)


r

r
out

(t)

�s
.

ṁ
vis
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, t) = t�
4+2s

3 .
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Impact of fallback

•           ~ constant up to tf ; drops as t-5/3 
afterwards.

• During t ≤ tf , disk builds up and is in ADAF; all 
infall mass at rf accretes inward and has wind:

• After tf, fallback is important only when accretion 
rate drops faster than fallback rate (t-5/3).

• when s < 1/4, 

• when s > 1/4, 

ṁfb(t)

ṁBH / t�4(1+s)/3;

ṁBH / ṁfb(t).

tf

ṁBH = ṁfb(t)(rin/rf )
s
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Phases of disk evolution

ADAF

ADAF Radiative

Radiative

rtra

ADAF Phase 0

1

2

3

n= 1/2

n= 1/2

n= 1/2, -2/3

n= -2/3

Fallback
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Complete Accretion Rate History
Phase 0 Phase 1 Phase 2 Phase 3

ADAF ADAF

ADAF - Radiative Radiative

B
H
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Time scales

 rtra(t)= rout(t) ⟹ ttra

 rtra(t)= rin ⟹ trad

 Uncertainties are due to:

β —  “penetration” parameter;

r*, m*, α, Μ6

B
H

Phase 0 Phase 1 Phase 2 Phase 3
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Application to Sw J1644+57

• Suggests accretion started 
as being ADAF and stays 
up to now with s > 1/4.

• tf (1+z)= 106 s ⟹             ṁfb(tf )
ṁfb(tf ) = 386 m⇤M

�1
6 .

• ttra /tf ≃0.5	 α-1/3 Μ6-1/6 

m*1/2 s.             

• Observed ttra /tf ≳30	 constrains 
α ≲ 3⨉10-5 M6-1/2 m*1/2.             ttra /tf ≳30

tf (1+z)

Phase 0
Phase 1

∝t-5/3~-4/3
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Conclusions
• Accretion rate in TDE is governed by viscous spreading.

• Our simple analytical model describes accretion rate 
history across four phases of disk evolution.

• Accretion rate can decline as steeply as t-5/3 only if disk 
losses mass in copious wind (s>1/4) in early ADAF phase.

• Later, accretion rate history is t-8/7 or shallower.

• Application to Sw J1644+57 constrains α ≲ 3⨉10-5 M6-1/2 

m*1/2. 
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M, J

R

Lense-Thirring drag

Disk precession in TDE
• A spinning BH: accretion disk is 

most likely mis-aligned with BH 
equator.

• General relativity for a spinning 
massive object ➔ frame 
dragging. 

• A tilted orbit of test particle 
precesses. 

• tLT ~ R3/ J = R3/(a M2). Lense-
Thirring effect.

a — BH spin
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Twisted accretion disk
Credit:  V. M. Lipunov

•L-T differential precession ➔ warps in inner 
disk. 

•Viscosity due to vertical shear straightens out 
warps ➔ inner disk aligns with BH equator. 

•Outer region: L-T effects drop rapidly 
outward, so it remains in original orbital plane 
➔ Bardeen-Petterson configuration. 

•Picture changes if considering propagation of 
warps. Credit:  G. Lodato

(Bardeen & Petterson 1975)
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Propagation of warps

• (Pringle 99; Nelson & Papaloizou 
99, 00; Fragile et al. 05, 07; …)

• Propagation of warps: in thick 
disk (α < H/R), tprop ~ tcs < tLT 
everywhere ➔ warps are 
communicated through the disk 
➔ solid-body precession.

• Probably applies to TDE disk.

(Fragile et al. 2007)
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Rigid-body precession 
of disk

• For Σ ∝ r-ζ,

• For an ADAF disk, ζ= 1/2-s;   and for a=0.9, s=1/2, 
rin=3, rout=20:

tprec,disk ≈ 105 M6 s.

t
prec,disk ' 8⇡

a

GM

c3
⇥ r5/2�⇣

out

r1/2+⇣
in
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Evolution of precession 
period

=

(
1/2� s, if s < 1/4,

1, if s > 1/4.

/
(
t
2
3 (2+s), if s < 1/4,

t, if s > 1/4.

Phase 0 Phase 1 Phase 2 Phase 3

rout(t) ∝ t2/3 ∝ t2/3 ∝ t2/7 ∝ t2/7

ζ 1 -3/2 -3/2

tprec,disk ∝ t ∝ t6/7 ∝ t6/7
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Dips in Sw J1644+57
(C. J. Saxton et al. 2011)

X-ray variability of Swift J1644+57 3
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Figure 1. Top panel: Swift/XRT 0.3–10 keV light-curve between
2011 March 28 and 2011 November 28, plotted on a linear time
scale. Datapoints in red are taken in PC mode; those in magenta
are in WT mode. The dashed curve is a phenomenological func-
tion used to de-trend the data and “normalise” the continuum.
Bottom panel: same as in the top panel, but on a logarithmic
time scale.

temporal bins. Such imperfections however are unnatural to
conventional Fourier (§ 3.2.1) and structure function meth-
ods (§ 3.2.3). There are various strategies that can circum-
vent this issue: we considered the hyphen method, the zigzag
method and the trapezoid method. In the hyphen method
the gaps are practically omitted. The flux levels are set to
be locally constant for the durations of the data bins. In the
zigzag method, a data point is set at the mid-time of each
observational bin, and we connect each point linearly to the
next consecutive data point. The numerical light curve is
piecewise linear and resembles a polygonal landscape. In a
variant trapezoid method, the observational bins are treated
as piecewise flat segments as in the hyphen method but the
gaps are connected directly with diagonal lines.

As the covering factor of the bins is small in the hyphen
method, unless the data are numerically bridged, we found
that the calculated power spectra and structure functions
tend to blur any useful information in the noise. Instead,
we found that the zigzag method tends to provide robust
results for power spectra and structure functions. The results
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Figure 2. Power spectrum of the Swift/XRT light curve (com-
bining data in WT and PC mode), excluding the first 2× 105 s.
The input data have been binned to 5000 s intervals. The power
spectrum is normalised (Leahy et al. 1983) such that its integral
gives the squared rms fractional variability (i.e., the Y axis is in
units of (rms)2 Hz−1), and the expected white noise level ≈ 2.
Two features at µHz frequencies (labelled in the plot) are sugges-
tive of periodicities on timescales ≈ (2.3± 0.3)× 105 s and about
twice that value.

obtained with the trapezoid method are indistinguishable
from those of the zigzag method. Thus, we present here only
the results from analyses done with the zigzag method.

3 MAIN RESULTS

3.1 Different phases in the lightcurve

Figure 1 shows the XRT 0.3–10 keV light-curve, binned by
snapshot (typical exposure duration ∼ a few 100 s). The
luminosity evolution shows a series of phases with different
phenomenological properties. During the first three months
after the outburst — in particular, at times 2× 105 s ! t !
9×106 s — the baseline trend is adequately fitted by an ex-
ponential decay, with an e-folding timescale of ≈ 2.0×106 s.
Flares and complex dips are superposed onto this trend.
In other work (Levan et al. 2011a), a more canonical tidal-
disruption decline scaling ∼ t−5/3 was fitted to the same
section of the light-curve; the difference is mostly due to
a different definition of the baseline. Later we will show a
change in the variability at t ≈ 4.7 × 106 s, which distin-
guishes “early” and “late” epochs of the declining stage. For
t " 9× 106 s, the decay stopped and the source appeared to
settle on a “plateau” (XRT count rate ≈ 0.1 ct s−1), with-
out any dips. Broader dips resumed for t " 12.5×106 s (the
“recent” epoch), but the baseline level has not significantly
declined below ≈ 0.1 ct s−1.

Because of the different behaviour of the light-curve at
different epochs, we shall investigate the short-term variabil-
ity separately in the different phases. We also note that the
state transitions are each a continuous, gradual evolution
of flux, timing and spectral properties over time. Therefore
the choice of start and end times defining the different epoch
sub-intervals are somewhat arbitrary (to within a few 105 s)
and do not affect the main conclusions of our study.

c© 2011 RAS, MNRAS 000, 1–16
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Lomb-Scargle periodogram is equivalent to a best-fit anal-
ysis of the data with a single sinusoidal function. The
phase and amplitude emerge directly for the implied fit.
The technique is observationally applied to diverse sub-
jects: exoplanet detections; solar eruptions; variable and
pulsating stars; high-energy accreting systems; ultracom-
pact binaries (e.g. Desidera et al. 2011; Farrell et al. 2010;
Foullon, Verwichte & Nakariakov 2009; Hakala et al. 2003;
Nataf, Stanek & Bakos 2010; Ness et al. 2011; Omiya et al.
2011; Qian, Solomon & Mlynczak 2010; Sarty et al. 2009;
Uthas et al. 2012; Xu et al. 2011; Wen et al. 2006).

Figure 3 presents Lomb-Scargle plots of four stages of
the light-curve: during the early decline (4 × 105 < t <
4.7 × 106 s), late decline (4.7 × 106 < t < 9 × 106 s), the
plateau (9 × 106 < t < 1.25 × 107 s), and the recent post-
plateau stage (t > 1.25 × 107 s). We used a freely available
IDL code4 implementing the formulation of Press & Rybicki
(1989) and Horne & Baliunas (1986). Power and detection
thresholds assume a grid of 1000 evenly spaced frequencies.
For the sake of smoother curves, the curve is drawn with 104

intermediate frequencies (not involved in the calculation of
detection thresholds). In our plots, peak detection thresh-
olds are marked in blue and red. Higher peaks are statis-
tically significant at the 1% level (“false alert probability”
FAP= 0.01). The blue (dashed) threshold is z0 in equation
(18) of section III(c) of Scargle (1982). The red (dot-dashed)
line is the threshold obtained from 104 “white noise simula-
tions” conservatively taking the light-curve’s total variance.
The data are not de-trended, so the variance is an overes-
timate. The uncorrected decay timescale (t0 ≈ 2 × 106 s)
during the early and later decline (t < 9 × 106 s) is prob-
ably responsible for artefacts at the long-period end of the
periodograms (top panels of Figure 3).

At early times (t < 4.7 × 106 s) there are peaks of var-
ied significance at periods of τ ≈ 0.23, 0.45, 0.9 and 1.4 Ms.
The first two in this series correspond to the two features
tentatively identified in the Fourier spectrum (§ 3.2.1). A
characteristic spacing ≈ 0.45Ms between dips is also in-
ferred from a visual inspection of the early part of the
XRT lightcurve (Figure 4). During later weeks of the de-
cline (4.7 × 106 < t < 9 × 106 s) there is a stronger
peak at period τ ≈ 0.9Ms. Later, during the plateau stage
(9× 106 ! t ! 12.5 × 106 s), the power of the peaks is rela-
tively low, consistent with the visible steadiness of the light-
curve. There may be a feature at τ ≈ 1.1 × 106 s, which is
near the 1% significance level, and perhaps another, weaker,
feature at ≈ 0.4 × 106 s. In the very latest times after the
plateau, when dipping resumed (t " 12.5 × 106 s), there is
a strong peak at τ ≈ 1.4Ms. This is consistent with a visual
inspection of the last section of the lightcurve, as it is the
characteristic spacing between major quasi-sinusoidal dips
(Figure 4).

In summary, the Lomb-Scargle analysis gives signs of
periodicity (which are stronger in some intervals than oth-
ers), and these indications are clearer than from the Fourier
analysis. We note that the Lomb-Scargle periodogram is
by construction most sensitive to oscillations similar to a
sine wave. Repetitive patterns that are highly non-sinusoidal
may have their true significance understated. The dips seen

4 http://astro.uni-tuebingen.de/software/idl/aitlib/timing/
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Figure 4. Top panel: zoomed-in view of an early section of the
light-curve, showing a structure of recurrent dips, many of them
consistent with a quasi periodic timescale of ≈ 4.5 × 105 s (solid
green lines). This kind of dip structure produces the characteris-
tic frequency signal detected in the Lomb-Scargle periodograms
and structure function analyses. However, some expected dips
are skipped or premature (dashed green lines). Bottom panel:
zoomed-in view of the last section of the light-curve observed to-
date; the dips occur on a longer timescale.

in the early phases of the XRT lightcurve (Figure 4) are
sharp and brief compared to the non-dip conditions: this is
clearly far from a sinusoidal pattern. This motivates further
study with another, broader technique.

3.2.3 Structure function technique

To obtain a more robust test of the presence or absence of
periodicity in the X-ray luminosity variations, we carried out
a more effective alternative analysis based on Kolmogorov’s

structure functions (Kolmogorov 1941, 1991). They are the
statistical moments of a temporally varying signal, with the
light curve compared to itself at an offset τ . The nth-order
structure function is

Sn(τ ) ≡ 〈[z(t+ τ )− z(t)]n〉 . (1)

The second order structure function, S2, is particu-
larly useful for the purpose of time series analysis, as
it describes the variance of a signal on timescales τ .

c© 2011 RAS, MNRAS 000, 1–16
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Figure 4. Top panel: zoomed-in view of an early section of the
light-curve, showing a structure of recurrent dips, many of them
consistent with a quasi periodic timescale of ≈ 4.5 × 105 s (solid
green lines). This kind of dip structure produces the characteris-
tic frequency signal detected in the Lomb-Scargle periodograms
and structure function analyses. However, some expected dips
are skipped or premature (dashed green lines). Bottom panel:
zoomed-in view of the last section of the light-curve observed to-
date; the dips occur on a longer timescale.

in the early phases of the XRT lightcurve (Figure 4) are
sharp and brief compared to the non-dip conditions: this is
clearly far from a sinusoidal pattern. This motivates further
study with another, broader technique.

3.2.3 Structure function technique

To obtain a more robust test of the presence or absence of
periodicity in the X-ray luminosity variations, we carried out
a more effective alternative analysis based on Kolmogorov’s

structure functions (Kolmogorov 1941, 1991). They are the
statistical moments of a temporally varying signal, with the
light curve compared to itself at an offset τ . The nth-order
structure function is

Sn(τ ) ≡ 〈[z(t+ τ )− z(t)]n〉 . (1)

The second order structure function, S2, is particu-
larly useful for the purpose of time series analysis, as
it describes the variance of a signal on timescales τ .
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Figure 3. Lomb-Scargle periodograms of the light-curve in four time intervals of interest. The data have not been de-trended. In the
first, second and fourth of these intervals, there are plausible periodicities: significant at the 1% FAP level (with two definitions of this
threshold marked as horizontal lines).

3.2 Search for periodicities

3.2.1 Fourier analysis

Fourier techniques, as implemented for example in the
XRONOS powspec timing analysis task (Stella & Angelini
1992), are widely used for the timing analysis of X-ray
lightcurves in AGN and X-ray binaries. The standard tech-
nique of dividing the lightcurve into multiple intervals, cal-
culating the power density spectrum in each interval, and
taking the mean of the power density values (and cor-
responding standard deviations) is applicable only if the
process is ergodic (Priestley 1988; Guidorzi 2011), so that
time averages can be substituted for ensemble averages. In
the case of highly non-stationary events like Sw J1644+57,
Gamma-ray bursts, or X-ray flares, it does not make sense to
subdivide the light-curve into sub-intervals, and the power
density spectrum has to be calculated over the entire dura-
tion of the observation (Guidorzi 2011). We did that, and
then calculated the standard deviation for the power den-
sity at each frequency bin with the procedure outlined in
Guidorzi (2011).

Figure 2 shows the power spectrum of the 0.3–10 keV
light-curve, excluding the first 2 × 105 s (that is, after the
huge initial flares have subsided). The root-mean-square

(rms) power rises at lower frequencies, as ∼ ν−1. This is
mostly due to the long-term dimming trend. There appear
to be two unresolved features at frequencies ≈ 2.2µHz and
4.5µHz; however, their power is comparable to the statis-
tical uncertainty. This prevents us from firmly concluding
whether there are true underlying periodicities or whether
those features were just statistical noise. Moreover, Fourier
analysis techniques are better suited to time series that are
equispaced and with no time gaps. Neither condition is true
in our case. The complex shape of the window and sampling
functions may introduce side lobes (spectral leakage) in the
discrete Fourier transform. In summary, we consider the fea-
tures observed in the power density spectrum as suggestive
of possible periodic signals, but not yet statistically signifi-
cant, because of the shortcomings of the Fourier technique.

3.2.2 Lomb-Scargle periodogram

As an improvement over Fourier power spectrum analy-
ses, Lomb (1976) and Scargle (1982) introduced a peri-
odogram technique that proves to be more robust in the
detection of periodicities in irregularly sampled light curves.
Press & Rybicki (1989) accelerated the method, with a nu-
merical modification based on fast Fourier transforms. The
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Fig. 2.— Evolution of the quasi-periods in Sw J1644+57 X-ray
light curve found by Saxton et al. (2012) via the Lomb-Scargle
periodogram.

Piran & Kumar 2001; Pen, Matzner & Wong 2003; Yuan,
Quataert & Narayan 2003; Kumar, Narayan & Johnson
2008). Then, from Ṁ = R1/2∂(νΣR1/2)/∂R, one finds
Σ ∝ R−n+s.
For a thick, ADAF disk, n = 1/2 (e.g., Cannizzo &

Gehrels 2009). Thus, plugging ζ = 1/2−s into Equation
(3), one finds

tprec,disk #
8π(1− s)

a(2 + s)

GM

c3
r1−s
i r2+s

o . (4)

For a = 0.9, s = 0.5, ri = 5 and ro = 20, a typical
value for tprec,disk is 1.1 × 105M6 s. Since tprec,disk is
most sensitive to ro, the disk precession period evolves
as ∝ t(4+2s)/3.

4. APPLICATION TO SW J1644

Figure 2 shows the long-term evolution of the quasi-
period in the Sw J1644+57 X-ray light curve. The quasi-
period increases as time but at a rate much slower than

∝ t(4+2s)/3. We also determine the separation times be-
tween peaks in the light curve, which are shown in Figure
3. The general trend of the peak-separation time evolu-
tion is consistent with the quasi-periods evolution. This
suggests that the solid body rotator configuration may
not hold at later times. When the accretion rate Ṁ drops
as a result of viscous evolution, the disk may transition
from thick to thin (H/R < α), so that the warp propaga-
tion time scale becomes larger than the local precession
time scale. Then the Bardeen-Petterson effect sets in.
As a result, the differential precession occurs in the disk
region of R ≥ RBP . Therefore, lower quasi-periods dom-
inate during those later epochs.

4.1. Disk wind collimation of the jet

Since the disk is very radiatively inefficient, it is in
ADAF regime and has powerful outflow from the sur-
face. Even if the jet is aligned with the hole spin axis
when it is generated, the powerful wind has the poten-
tial ability to deflect the jet in a periodic manner. Below,
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Fig. 3.— Separations between neighboring peaks as a function
of time. Identifying the peaks is done by eyes.

we follow Begelman et al. (2006)’s formalism to carry out
the calculation.
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2008). Then, from Ṁ = R1/2∂(νΣR1/2)/∂R, one finds
Σ ∝ R−n+s.
For a thick, ADAF disk, n = 1/2 (e.g., Cannizzo &

Gehrels 2009). Thus, plugging ζ = 1/2−s into Equation
(3), one finds

tprec,disk #
8π(1− s)

a(2 + s)

GM

c3
r1−s
i r2+s

o . (4)

For a = 0.9, s = 0.5, ri = 5 and ro = 20, a typical
value for tprec,disk is 1.1 × 105M6 s. Since tprec,disk is
most sensitive to ro, the disk precession period evolves
as ∝ t(4+2s)/3.

4. APPLICATION TO SW J1644

Figure 2 shows the long-term evolution of the quasi-
period in the Sw J1644+57 X-ray light curve. The quasi-
period increases as time but at a rate much slower than

∝ t(4+2s)/3. We also determine the separation times be-
tween peaks in the light curve, which are shown in Figure
3. The general trend of the peak-separation time evolu-
tion is consistent with the quasi-periods evolution. This
suggests that the solid body rotator configuration may
not hold at later times. When the accretion rate Ṁ drops
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∝ t2/3

∝ t2/3
• Observed dipping period 

evolution is slower than 
predicted tprec,disk evolution.

• Suggests the rigid body 
assumption may not be valid.

• Calls for a thorough 
investigation of disk 
precession in TDEs. 
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Conclusions
• Accretion rate in TDE is governed by viscous spreading.

• Our simple analytical model describes accretion rate history 
across four phases of disk evolution.

• Accretion rate can decline as steeply as t-5/3 only if disk losses 
mass in copious wind (s>1/4) in early ADAF phase.

• Later, accretion rate history is t-8/7 or shallower.

• Application to Sw J1644+57 constrains α ≲ 3⨉10-5 M6-1/2 m*1/2. 

• Thorough investigation of disk precession in TDEs is called for.
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