The Evolution of Accretion Disk in Tidal Disruption Events (TDEs)

Rongfeng Shen Dept. of Astron. & Astrophy., University of Toronto & Chris Matzner (University of Toronto) (in prep.)

ESAC Workshop of TDEs, Madrid, June 25, 2012

TDE model predictions

 (Rees 88; Evans & Kochanek 89; Li et al. 02; Strubbe & Quataert 09; Lodato et al. 09; …)

• $R_T = R_* (M/M_*)^{1/3} \sim 20 M_6^{-2/3} r_* m_*^{-1/3}$ R_S.

 $\beta = R_T / R_p$.

• $t_f \sim 3.3 \times 10^6 \ \beta^{-3} \ M_6^{1/2} \ r *^{2/3} \ m *^{-1} \ s.$

• Peak fallback rate ~ $0.5M_*/t_f$ ~ $10^{-7} \beta^3 M_6^{-1/2} r_*^{-2/3} m_*^2 M_{\odot} s^{-1}$ ~ $10^2 \beta^3 M_6^{-3/2} r_*^{-2/3} m_*^2 \times Eddington$ accretion rate (10% efficiency)!

Debris mass fallback rate

- Fallback rate is determined by stellar mass distribution over specific energy.
- For constant distribution (e.g., Rees 1988),

 $\dot{M}_{\rm fb} \propto (t/t_f)^{-\frac{5}{3}}$

• Early fallback rate depends on stellar structure.

(Lodato et al. 2009; most recently Guillochon & Ramirez-Ruiz 2012)

TDE observations

(Gezari et al. 2012)

 Targets of transient surveys (Pan-STARRS, PTF, LSST, LOFAR, SARSIR, EXIST, ...)

Swift J1644-57: a jetted TDE

(Levan et al. 2011)

Accretion rate = fallback rate?

- Accretion (viscosity) timescale << fallback time scale.
- Accretion rate evolution is driven by viscous spreading.
- And is affected by wind loss for an ADAF (advection dominated accretion flow) disk.

Viscous spreading of a ring of mass (Pringle 1981).

TDE: Accretion disk with fallback

 $r-{\small {\sf Schwarzschild}}{\small {\sf -normalized}} \ radius$

Viscous evolution of accretion disk

 Viscous spreading of a Keplerian disk with an infall (Lightman 74; Cannizzo et al. 90; Pringle 91; Tanaka 11; ...)

 $\frac{\partial \Sigma}{\partial t} = \frac{3}{R} \frac{\partial}{\partial R} \left[R^{1/2} \frac{\partial}{\partial R} (R^{1/2} \nu \Sigma) \right] + S(R, t)$ $\nu = \frac{2\alpha P}{3\Omega_k \rho}$

- Σ surface density; α Shakura & Sunyaev viscosity parameter.
- For the case of $v \propto \mathbb{R}^n$ and $S(\mathbb{R},t)=0$:

• $\Sigma \propto \mathbf{R}^{-\mathbf{n}}$

•
$$R_{out} \propto t^{1/[2(2-n)]}$$

•
$$\dot{M}_{
m vis} \propto t^{-rac{5-2r}{4-2r}}$$

Viscous evolution of accretion disk

 Viscous spreading of a Keplerian disk with an infall (Lightman 74; Cannizzo et al. 90; Pringle 91; Tanaka 11; ...)

 $\frac{\partial \Sigma}{\partial t} = \frac{3}{R} \frac{\partial}{\partial R} \left[R^{1/2} \frac{\partial}{\partial R} (R^{1/2} \nu \Sigma) \right] + S(R, t)$ $\nu = \frac{2\alpha P}{3\Omega_k \rho}$

- Σ surface density; α Shakura & Sunyaev viscosity parameter.
- For the case of $v \propto R^n$ and S(R,t)=0: For S(R,t)=const.:
 - $\Sigma \propto \mathbf{R}^{-n}$

•
$$R_{out} \propto t^{1/[2(2-n)]}$$

•
$$\dot{M}_{
m vis} \propto t^{-rac{5-2r}{4-2r}}$$

$$\dot{M}_{\rm BH} \approx \dot{M}_{\rm fb}(t)$$

(Metzger et al. 12)

A spreading disk with fallback

(without fallback)

 $\dot{M}_{\rm BH}(t) = \dot{M}_{\rm vis}(t) + \dot{M}_{\rm fb}(t)$

(Impact of wind loss to be included)

Outline

- Is accretion rate equal to fallback rate?
- Accretion is driven by viscous spreading.
- What is the long-term evolution history of $\dot{M}_{\rm BH}(t)$?
 - What is n $(v \sim R^n)$?
 - Impacts of wind loss and fallback on $\dot{M}_{
 m BH}(t)$
- Application to Swift J164449.3+573451.
- Precession of disk misaligned with BH spin.

Steady state disk equations

 Energy equation: local heating = advective cooling + radiative cooling.

 $Q_{\rm vis}^+(\nu,\Sigma) = Q_{\rm adv}^-(\nu,\Sigma,P/\rho) + Q_{\rm rad}^-(\Sigma,T)$

- If $Q_{adv} \gg Q_{rad}$ (ADAF), $v \propto R^{1/2}$, $\rightarrow n = 1/2$. $\longrightarrow \dot{M}_{vis} \propto t^{-\frac{4}{3}}$
- If $Q_{adv} \ll Q_{rad}$ (Radiative),
 - when $P \simeq P_{rad}$, $v \propto R^{-3/2}$, $\rightarrow n = -3/2$; $\longrightarrow \dot{M}_{vis} \propto t^{-\frac{8}{7}}$
 - when $P \simeq P_{gas}$, $v \propto R^{3/5}$, $\rightarrow n=3/5$.

 $\longrightarrow \dot{M}_{\rm vis} \propto t^{-\frac{19}{14}}$

Phase changes of disk

- Assuming $P \simeq P_{rad} \gg P_{gas}$,
 - $\frac{H}{R} = \frac{\sqrt{P/\rho}}{\Omega_k R} \approx \min\left(1, \frac{\dot{m}}{r}\right),$

$$\frac{Q_{\rm adv}^-}{Q_{\rm rad}^-} = \frac{5}{4} \left(\frac{\dot{m}}{r}\right) \left(\frac{H}{R}\right)$$

Eddington-normalized accretion rate

• As accretion rate drops:

Impact of wind loss

ADAF launches outflow (wind) up to min(r_{tra}, r_{out})
 (Blandford & Begelman 99; Narayan et al. 00;...).

$$\dot{m}(r) \propto r^s$$
, with $0 \le s \le 1$.
 $\Sigma \propto r^{-n+s}$, $\dot{m}(r,t) = \dot{m}(r_{\text{out}},t) \left[\frac{r}{r_{\text{out}}(t)}\right]^s$

• For a complete ADAF disk (n=1/2; without fallback):

loss of disk angular mom. via wind $\Longrightarrow \dot{m}_{vis}(r_{out}, t) = t^{-\frac{4+2s}{3}}$.

Impact of fallback

m
 _{fb}(t)~ constant up to t_f; drops as t^{-5/3}
 afterwards.

• During $t \le t_f$, disk builds up and is in ADAF; all infall mass at r_f accretes inward and has wind: $\dot{m}_{\rm BH} = \dot{m}_{\rm fb}(t)(r_{\rm in}/r_f)^s$

 After t_f, fallback is important only when accretion rate drops faster than fallback rate (t^{-5/3}).

• when s < 1/4, $\dot{m}_{BH} \propto t^{-4(1+s)/3};$

• when s > 1/4, $\dot{m}_{BH} \propto \dot{m}_{\rm fb}(t)$.

tf

Phases of disk evolution

Complete Accretion Rate History

Time scales

Phase 0 Phase 1 Phase 2 Phase 3

$$\sim \dot{M}_{fb} \left(\frac{R}{R_{f}}\right)^{s}$$

 $\sigma \dot{M}_{fb}(t)$
 $t_{f} \sim 1-10 \text{ days}$
 $t_{tra} \sim 10-100 t_{f}$
 $t_{rad} \sim 10^{2}-10^{3} t_{f}$
 $\log t$

• $r_{tra}(t) = r_{out}(t) \Longrightarrow t_{tra}$

 $g \dot{M}_{\rm RH}(t)$

• Uncertainties are due to:

 \circ $r_{tra}(t) = r_{in} \Longrightarrow t_{rad}$

 β — "penetration" parameter; r*, m*, α , M₆

Application to Sw J1644+57

- Suggests accretion started as being ADAF and stays up to now with s > 1/4.
- $t_f(1+z) = 10^6 s \Longrightarrow$ $\dot{m}_{fb}(t_f) = 386 \ m_* M_6^{-1}.$ • $t_{tra}/t_f \simeq 0.5 \ \alpha^{-1/3} \ M_6^{-1/6}$

 $m*^{1/2} s.$

• Observed $t_{tra}/t_f \gtrsim 30$ constrains $\alpha \leq 3 \times 10^{-5} M_6^{-1/2} m *^{1/2}$.

 $t_{tra}/t_f \gtrsim 30$

 $t_f(1+z)$

Conclusions

- Accretion rate in TDE is governed by viscous spreading.
- Our simple analytical model describes accretion rate history across four phases of disk evolution.
- Accretion rate can decline as steeply as t^{-5/3} only if disk losses mass in copious wind (s>1/4) in early ADAF phase.
- Later, accretion rate history is $t^{-8/7}$ or shallower.
- Application to Sw JI644+57 constrains $\alpha \lesssim 3 \times 10^{-5} M_6^{-1/2}$ $m *^{1/2}$.

Disk precession in TDE

- A spinning BH: accretion disk is most likely mis-aligned with BH equator.
- General relativity for a spinning massive object → frame dragging.
- A tilted orbit of test particle precesses.
- $t_{LT} \sim R^3 / J = R^3 / (a M^2)$. Lense-Thirring effect.
 - a BH spin

Twisted accretion disk

•L-T differential precession → warps in inner disk.

•Viscosity due to vertical shear straightens out warps \rightarrow inner disk aligns with BH equator.

 Outer region: L-T effects drop rapidly outward, so it remains in original orbital plane
 → Bardeen-Petterson configuration.

•Picture changes if considering propagation of warps.

Propagation of warps

- (Pringle 99; Nelson & Papaloizou 99, 00; Fragile et al. 05, 07; ...)
- Propagation of warps: in thick disk (α < H/R), t_{prop} ~ t_{cs} < t_{LT} everywhere → warps are communicated through the disk
 → solid-body precession.
- Probably applies to TDE disk.

⁽Fragile et al. 2007)

Rigid-body precession of disk

• For $\Sigma \propto r^{-\zeta}$,

$$t_{\rm prec,disk} \simeq \frac{8\pi}{a} \frac{GM}{c^3} \times r_{\rm out}^{5/2-\zeta} r_{\rm in}^{1/2+\zeta}$$

• For an ADAF disk, $\zeta = 1/2$ -s; and for a=0.9, s=1/2, $r_{in}=3$, $r_{out}=20$:

 $t_{\text{prec,disk}} \approx 10^5 \text{ M}_6 \text{ s.}$

Evolution of precession period

	Phase 0	Phase 1	Phase 2	Phase 3
r _{out} (t)	$\propto t^{2/3}$	∝ t ^{2/3}	∝ t ^{2/7}	∝ t ^{2/7}
ζ	1	$= \begin{cases} 1/2 - s, & \text{if } s < 1/4, \\ 1, & \text{if } s > 1/4. \end{cases}$	-3/2	-3/2
t _{prec,disk}	∝ t	$\propto \begin{cases} t^{\frac{2}{3}(2+s)}, & \text{if } s < 1/4, \\ t, & \text{if } s > 1/4. \end{cases}$	∝ t ^{6/7}	∝ t ^{6/7}

Dips in Sw J1644+57 (C. J. Saxton et al. 2011)

Quasi-periodicity in light curve (Saxton et al. 2011)

Comparing prediction with data

- Observed dipping period evolution is slower than predicted t_{prec,disk} evolution.
- Suggests the rigid body assumption may not be valid.
- Calls for a thorough investigation of disk precession in TDEs.

Conclusions

- Accretion rate in TDE is governed by viscous spreading.
- Our simple analytical model describes accretion rate history across four phases of disk evolution.
- Accretion rate can decline as steeply as t^{-5/3} only if disk losses mass in copious wind (s>1/4) in early ADAF phase.
- Later, accretion rate history is $t^{-8/7}$ or shallower.
- Application to Sw JI644+57 constrains $\alpha \leq 3 \times 10^{-5} \, M_6^{-1/2} \, m *^{1/2}$.
- Thorough investigation of disk precession in TDEs is called for.