Constraints on radio jets from known stellar tidal disruption events

Do all TDFs launch jets?

Sjoert van Velzen
Radboud University Nijmegen

Dale Frail, Heino Falcke, Elmar Körding, Hendrik van Eerten

Tidal Disruption events and AGN outbursts workshop
June 2012, Madrid
Learn from tidal disruption jets

• For single events:
 ‣ Disk + B-field
 ‣ Calorimetry

• Discovery:
 ‣ Radio not absorbed
 ‣ Upcoming radio transient surveys

• Accretion states
Black hole accretion modes

• Two accretion states, divided by Eddington rate

• Radio jets below \(\sim 2\% \dot{M}_{\text{Edd}} \)

 ‣ Observed for stellar mass accreting binaries (McClintock & Remillard 2004; Fender et al. 2004)

 ‣ Also the case for SMBHs? (Körding et al. 2006; Best & Heckman 2012)

• With TDEs we probe these rates for a single SMBH
Radio observations -- “Status of the field”

< 2011 No detections ≈3 events followed up

> 2011 Two detections (‘Swift events’), more followed up
Two models

- **External model** (Giannios & Metzger 2011; Metzger, Giannios, Mimica 2011)
 - Interaction of forward/backward shock with environment
 - On-axis (or isotropic)
 - Inspired by GRB afterglows

- **Internal model** (van Velzen, Falcke, Farrar 2010, van Velzen, Körding, Falcke 2011)
 - Emission from matter injected in the jet from the disk
 - Doppler boosting
 - Inspired by AGN jets
Standard AGN jet model

- **Conical jet model** (Blandford & Königl 1979)

- **Jet power is a linear function of disk luminosity** (Rawlings & Saunders 1991; Falcke & Biermann 1995)

- **Well constrained by observation**

\[
L_\nu = C_{\text{eq}} \delta^2 \int_{z_{\text{ssa}}}^{\infty} dz \, z^2 \epsilon_{\text{syn}}(z, \nu / \delta) \propto (q_j L_d)^{17/12}
\]

Körding et al. 2008

![Graph showing the relationship between accretion luminosity and jet luminosity](image-url)
Add time dependence

- Disk luminosity given by fallback rate

- Self-absorption radius sets the emission timescale

- Three scenarios for order of accretion modes

\[q_j = \begin{cases}
0.2 & \text{all times} \\
0.002 & \dot{M}(t) > 2\% \dot{M}_{\text{Edd}} \\
0.2 & t < t_{\text{fallback}} \end{cases} \]

- Radio-loud
- Eddington trigger
- Radio burst
Model light curves

\[M_{\text{BH}} = 1 \times 10^7 M_\odot \]

- Green line: 10 GHz, always radio-loud (a)
- Blue line: 1.4 GHz, always radio-loud (a)
- Gray line: 200 MHz, always radio-loud (a)
- Blue dotted line: 1.4 GHz, loud for \(\dot{M} < 2\% \) (b)
- Blue dashed line: 1.4 GHz, burst (c)

jet luminosity (erg s\(^{-1}\) Hz\(^{-1}\))

\[10^27 \quad 10^28 \quad 10^29 \quad 10^30 \quad 10^31 \quad 10^32 \]

time since disruption (yr)

\[10^0 \quad 10^1 \]
Delay could explain existing non-detections
Jansky VLA observations at 5 GHz

<table>
<thead>
<tr>
<th>name</th>
<th>integration time</th>
<th>$\sigma(F_\nu)$</th>
<th>Δt</th>
</tr>
</thead>
<tbody>
<tr>
<td>TD 04A</td>
<td>30</td>
<td>9</td>
<td>8.0</td>
</tr>
<tr>
<td>TD 04B</td>
<td>18</td>
<td>8</td>
<td>7.6</td>
</tr>
<tr>
<td>TVV-1?</td>
<td>28</td>
<td>10</td>
<td>5.4</td>
</tr>
<tr>
<td>SG-2?</td>
<td>28</td>
<td>8</td>
<td>4.8</td>
</tr>
<tr>
<td>TDE2</td>
<td>25</td>
<td>12</td>
<td>4.3</td>
</tr>
<tr>
<td>PTF10iya</td>
<td>18</td>
<td>8</td>
<td>1.6</td>
</tr>
</tbody>
</table>

No detections
Exclusion for the external model

- Find largest jet angle consistent with non-detection

- Probability for at least one detection:
 - Always radio loud: 99.992%
 - Radio flare: 50%
 - Only below 2% Eddington: 33%
Sw 1644+57 late-time light curve

- few mJy after 10 yr! (if $\Gamma>1$)
- Scale to off-axis observers
 - Knowledge of frequency structure required
 - Assume ‘blob’

![Graph showing the late-time light curve of Sw 1644+57 with flux density (mJy) plotted against time (yr) for 22 GHz and 6 GHz frequencies. The graph includes curves for different energy scales: $E=10^{52}$, $E=3\times10^{52}$, and $E=10^{53}$, with EVLA sensitivity lines at 22 GHz (5σ) and 6 GHz (5σ).]
Sw 1644+57 off-axis: $\Gamma(t>1\text{yr}) = 2$

Probability zero detections = 0.1%
\[\Gamma(t) = \sim t^{-0.2} \; ; \; \text{Sedov-Taylor if } \Gamma < 2 \]

Probability zero detections = 0.1%
Not all TDF launch jets?

• Radio upper limits for optically discovered TDF inconsistent with current jet models

• But optical TDF (may) have different:
 ‣ Environment
 ‣ Black hole mass; accreted matter
 ‣ Delay with respect to time of disruption
Good news: areal rate of Sw 1644+57

\[R(F_\nu) \sim 10^{-3} \left(\frac{20 \text{ mJy}}{F_\nu} \right)^{3/2} \frac{\dot{N}_{\text{TDE}}}{10^{-5} \text{ yr}^{-1}} (1/\Gamma)^2 \text{ deg}^{-2} \]
Outlook

- Wait for Sedov phase of Sw 1644+57
- Analyze Sw 2058+05
- Include other non-detections
- Keep observing!
Lessons from multi-frequency radio data (Zauderer et al. 2011)

- ~days delay between 4.9 GHz and 6.7 GHz
- For conical jet:
 \[z_{ssa} = z_0 \left(\frac{\nu}{\nu_0} \right)^{-1} \]
 \[z_0 \sim 10^{-3} \text{ pc} \]
- Much smaller than equipartition for \(q_j = 0.2 \)
Predicted rate and observed upper limits
Sw 1644+57 off-axis: $\Gamma(t) = \sim t^{-0.2}$

Probability zero detections = 0.00%