New maser sources

RRLs as a tool to study ionized outflows and disks around massive stars

ALEJANDRO BÁEZ RUBIO

Astrobiology Center / Centro de Astrobiología (CSIC-INTA) Astrophysics department. Laboratory of molecular astrophysics.

Supervisor: Jesús Martín-Pintado

Star and Planet Formation Workshop. ESAC. Villanueva de la Canada

21 January 2013

Introduction	MWC349A	New maser sources	Conclusions
•0			
Motivation			

• Low-mass star formation: ⇒ accretion of material through circumstellar disks

Introduction ●0	MWC349A 00000	New maser sources	Conclusions
Motivation			

- Low-mass star formation: ⇒ accretion of material through circumstellar disks
- High-mass star formation: \Rightarrow ?
 - Evidence of circumstellar disks around massive stars

Danchi et al. 2001, ApJ, 562, 440

Introduction ●0	MWC349A 00000	New maser sources	Conclusions
Motivation			

- Low-mass star formation: ⇒ accretion of material through circumstellar disks
- High-mass star formation: \Rightarrow ?
 - Evidence of circumstellar disks around massive stars

Danchi et al. 2001, ApJ, 562, 440

Motivation

Understanding the kinematics of circumstellar disks and their associated outflows

Introduction ○●	MWC349A 00000	New maser sources	Conclusions
Motivation			

• Radio-recombination lines

Introduction ⊙●	MWC349A 00000	New maser sources	Conclusions
Motivation			

- Radio-recombination lines
- Stellar winds. UC-HII regions: $\Delta v > 10 \text{ km/s}$

0•	00000	
Motivation		

- Radio-recombination lines
- Stellar winds.
 UC-HII regions: Δv > 10 km/s
- MWC349A
 - Dense circumstellar neutral disk

Danchi et al. 2001, ApJ, 562, 440

o●	00000	New maser sources	Conclusions
Motivation			

- Radio-recombination lines
- Stellar winds.
 UC-HII regions: Δv > 10 km/s
- MWC349A
 - Dense circumstellar neutral disk
 - Maser and laser emission at Hydrogen recombination lines
 - Their high intensity makes possible to have a high spectral and angular resolution

Martín-Pintado et al. 1989, A&A, 215, L13

	00000	New maser sources	Conclusions
Motivation			

- Radio-recombination lines
- Stellar winds.
 UC-HII regions: Δv > 10 km/s
- MWC349A
 - Dense circumstellar neutral disk
 - Maser and laser emission at Hydrogen recombination lines
 - Their high intensity makes possible to have a high spectral and angular resolution

Martín-Pintado et al. 1989, A&A, 215, L13

3D non-LTE radiative-transfer model

MORELI (MOdel for REcombination LInes)

Báez-Rubio, A., Martín-Pintado, J., Thum, C. & Planesas, P. 2013, A&A submitted

log(S v) [log(Jy)]

Martín-Pintado et al. 2011, A&A, 530, L15

Kinematic m	nodel		
00	MWC349A ○○●○○	New maser sources	Conclusions

Constraining the	kinematics		
Introduction 00	MWC349A ○○○●○	New maser sources	Conclusions

		00	
Integrated-II	ne tluxes		

Jiménez-Serra, I., Martín-Pintado, J., Báez-Rubio, A. et al.

2011, ApJ, 732, L27

1995 1.3 cm

Curiel, S., Ho, P., Patel, N. et al. 2006, ApJ, 638, 878

 Introduction
 MWC349A 00000
 New maser sources
 Conclusion

 Other RRL maser sources:
 MonR2-IRS2

Jiménez-Serra, I, Báez-Rubio, A., Rivilla, V.M. et al. 2012, ApJ, accepted for publication

Conclusions

MWC349A

- Radio-recombination lines are an excellent tool to study the kinematics of UC-HII regions.
- Stellar ionized wind is rotating
- Stellar ionized wind acceleration happens in short distances and from very inner radii

Conclusions

MWC349A

- Radio-recombination lines are an excellent tool to study the kinematics of UC-HII regions.
- Stellar ionized wind is rotating
- Stellar ionized wind acceleration happens in short distances and from very inner radii

General

• A new field in the study of massive star formation is emerging with the new instrument capabilities

Introduction	MWC349A	New maser sources	Conclusions

Thank you for your attention! :-)

Gracias!