

CENTRO DE ASTROBIOLOGÍA

STUDY OF CYANOACETYLENE IN ORION KL: DETECTION OF DC₃N

Gisela B. Esplugues J. Cernicharo, J. R. Goicoechea, S. Viti, B. Tercero Centro de Astrobiología CSIC-INTA Madrid - 21 Enero 2013

WHY HC₃N?

- Cyanoacetylene has properties making it convenient for deriving physical parameters of molecular clouds.
- Heavy linear molecule with large moment of inertia and small rotational constant $B \rightarrow$ rotational transitions J \rightarrow J-1 are relatively close in frequency.
- Low energy of bending modes many vibrationally excited states.
- Excellent tracer of early evolutionary stages of massive stars; hot (T>150 K) and dense (n>10⁷ cm⁻³) regions affected by high extinction.

- Two surveys: IRAM+HIFI
- IRAM: 80-280 GHz
- HIFI: 480-1907 GHz
- Detected species:

- * HC_3N ground state (>70 lines) and ¹³C isotopologues.
- * vibrational states v_7 , $2v_7$, $3v_7$, v_5 , v_6 , v_6+v_7 (>200 lines)

• Fit line profiles using an LVG code (line-widths due to the existence of large velocity gradients across the cloud).

• Components of the cloud:

Component	Source diameter	Offset (IRc2)	<i>n</i> (H ₂)	T _K	$\Delta v_{\rm FWHM}$	V _{LSR}
	('')	('')	cm^{-3}	(K)	$({\rm km \ s^{-1}})$	$({\rm km \ s^{-1}})$
Extended ridge (ER)	120	0	10^{5}	60	4	8.5
Compact ridge (CR)	15	3	10^{6}	110	3	8
High velocity plateau (HP)	30	0	10^{6}	100	30	11
Plateau (PL)	20	2	$5x10^{6}$	150	25	6
Outer hot core (HC1)	10	3	1.5×10^{7}	180	10	5.5
Hot core (HC2)	7	3	$5x10^{7}$	250	7	5.5
20.5 km s ⁻¹ component	5	2	$5x10^{6}$	90	7.5	20.5

• We fix all the above parameters, leaving only as a free parameter the column density.

• Obtain physical parameters (column densities and abundances).

- 80-280 GHz
- 19<*E*_{up}<203 K</p>
 - 8<J<30
- Excellent tracer of cold gas from extended ridge (3 mm).
 - The hot core dominates (2-1.3 mm) with:

 $N_{\rm HC3N}$ =1.0±0.2x10¹⁵cm⁻² $N_{\rm HC3N \ v5}$ =1.5±0.3x10¹⁴cm⁻² $N_{\rm HC3N \ v6}$ =3.0±0.6x10¹⁴cm⁻² $N_{\rm HC3N \ v7}$ =1.2±0.4x10¹⁵cm⁻²

* Deuterated species are produced mainly in molecular environments characterised by low temperatures (T≤20 K), typical of low-mass pre-stellar cores.

* We detect four lines in the IRAM line survey.

 DC_3N

- Column densities:
 - Hot core HC1: *N*=1.1±0.3x10¹³ cm⁻²
 - Compact ridge: N=2.7±0.8x10¹² cm⁻²
- (DC3N/HC3N)_{OrionKL}
 =0.011±0.006
- (DC3N/HC3N)_{TMC1}
 =0.02-0.08

What is the origin of this DC₃N??

ABOUT THE ORIGIN OF DC₃N:

- To obtain large ratios of D/H, low temperatures and high density (n>10⁴ cm⁻³) are required.
- 1. A plausible mechanism is that DC_3N is formed prior to the gasphase (on grain surfaces) and then evaporated.
- But HC_3N is mainly formed during the gas-phase.
- Deuterium is mainly locked into HD and transfered to other species by exothermic ion-molecule reactions.
- DC₃N could be formed subsequently through deuterated ions reacting with HC₃N:

$$H_2D^+ + HC_3N \rightarrow HDC_3N^+ + H_2$$

CHEMICAL MODEL

• A time-dependent chemical model for the hot core of Orion KL.

• Two phases:

- * <u>Phase I</u>: chemical evolution during the cloud's gravitational collapse, until the formation of a dense core. (Cold phase where molecules are adsorbed onto the dust grains).
- * <u>Phase II</u>: after the molecular gas is evaporated from grain surfaces (when the central star is formed) up to now.
- Different masses for the central star formed, initial abundances and freeze out efficiencies.
- Output parameter: column densities as a function of time.
- Comparison with observations.

CHEMICAL MODEL

 $N(HC_3N)_{HC1}=1.0x10^{15} \text{ cm}^{-2}$ $N(DC_3N)_{HC1}=1.1x10^{13} \text{ cm}^{-2}$

CONCLUSIONS

- HC_3N is an excellent hot and dense gas tracer with column densities up to two orders of magnitude larger in the hot core than in the other components.
- The large number of detected lines (ground and vibrational states), especially at very high frequencies and energies (HIFI), demonstrates the necessity of considering a stratification of the hot core.
- Detection of DC₃N for first time in a giant molecular cloud.
- \circ DC₃N is formed during the gas-phase

t_{hot core}~60,000 years.

CENTRO DE ASTROBIOLOGÍA

STUDY OF CYANOACETYLENE IN ORION KL: DETECTION OF DC₃N

Gisela B. Esplugues J. Cernicharo, J. R. Goicoechea, S. Viti, B. Tercero Centro de Astrobiología CSIC-INTA Madrid - 21 Enero 2013