Organic molecules in the massive star forming region Orion-KL

PhD student: Alicia López Jiménez, Dir.: José Cernicharo Quintanilla (CAB, INTA-CSIC) Co-dir.: JoseLuis Alonso Hernández (QUIFIMA, UVA)

CENTRO DE ASTROBIOLOGÍA Asociado al Nasa Astrobiology Institute

METHODS

30m-IRAM (3, 2, 1.3 mm)

1-1.25 MHz

• Stark modulation (100-700 V)

Frequency-modulated spectrometers

26-110 GHz (170 GHz, multipliers & detectors) 240-360 GHz (FM modulation)

0.5 KHz

RADIATIVE TRANSFER MODEL AND **ANALISYS** LTE

SPECTROSCOPIC STUDY

Detect and identify vibrationally excited states in our LINE SURVEY \rightarrow \downarrow U-lines

RESULTS

Methyl formate

RESULTS

X [N (HCOOCH3)/N(H2)] TOTAL = (1.5±0.8)x10⁻⁷

Ethyl cyanide

RESULTS

>2000 detected lines CH₃CH₂CN

N^{er} detected lines (free of blending): 66 (v_{20} =1) and 56 (v_{12} =1)

X [N (CH3CH2CN)/N(H2)] TOTAL = $(1.3\pm0.4)x10^{-7}$

>2300 detected lines CH₂CHCN

N^{er} detected lines (free of blending): 40 and 16 (v_{11} =2,3), and 33 ($v_{10}/v_{11}v_{15}$ =1)

X [N (CH3CH2CN)/N(H2)] **TOTAL** = $(4 \pm 1) \times 10^{-8}$

Detection of new species in ISM regions allow us to improve our knowledge about physico-chemical conditions of astrophysical source.

DETECTED LINES (80-280 GHz):

 $> 2000 (HCOOCH_3) > 2000 (CH_3CH_2CN) > 2300 (CH_2CHCN)$

For the first time we have detected in the ISM: 2 new states for CH₃CH₂CN and 3 new states for CH₂CHCN

Organic saturated molecules have many transitions, constraining physical parameters in the region and being very located in a specific component (HCOOCH₃ from compact ridge, CH₃CH₂CN and CH₂CHCN from hot core) so we can derive the T and N gradient:

"POSSIBLE SCENARIO OF STAR FORMATION IN THEIR INNER PARTS" (region could be internally heated)

Further data analisys coming from ALMA, SOFIA will require the joint study of laboratory and observational data (avoid line confusion and reduce U-line)

RELEVANT BIBLIOGRAFY

- **B.** *Tercero* (dissertation "Barrido espectral sobre Orion KL", 2005)
- **B.** Tercero, J, Cernicharo, J. R. Pardo, J. R. Goicoechea, 517, 96, A&A, 2010
- A. M. Daly, M. C. Bermúdez, A. López, B. Tercero, N. Marcelino J. Pearson J.
 L. Alonso, J. Cernicharo (sent, 2012)
- J. Cernicharo "Internal IRAM report" (1985)
- **J. R. Pardo, J. Cernicharo and E. Serabyn**, 2001, 49,12
- **R. D. Brown**, "Discovery of Interstellar methyl formate", ApJ, 1975
- D. R. Johnson and F. J. Lovas, C. A. Gottlieb, E.W. Gottlieb, and M. M. Litvak, and M. Guelin and P. Thaddeus, "Detection of interstellar ethyl cyanide" 1977
- F. F. Gardner and G. Winnewisser "The detection of interstellar Vinyl cyanide" 1975

