Vacuum-UV spectroscopy of interstellar ice analogs.

G. A. Cruz-Diaz, G. M. Muñoz Caro, and Y.-J. Chen

January 21st, 2013

Interstellar medium

- Dense interstellar clouds: T ~ 10 K, density 10⁵ particles cm⁻³ mainly H₂.
- Dust particles: composed of refractory materials such as silicate and amorphous carbon. Icy mantles represent the transient interface between gaseous and solid phases.
- UV-photons: are either produced in the vicinity of a young star, or induced by cosmic ray excitation of H₂, 10⁸ photons cm⁻² s⁻¹, 10³-10⁴ photons cm⁻² s⁻¹ respectively.

The Loschmidt's number (2.7 \times 10¹⁹ particles cm⁻³) enables a rough estimate of the pressure in the dense interstellar medium, 10⁻¹¹ mbar.

Molecular cloud Barnard 68.

ISAC

• The InterStellar Astrochemitry Chamber is an UHV set-up, with base pressure around P = 4×10^{-11} mbar, were an ice layer is deposited onto a KBr or MgF₂ substrate at 8 K and can be UV-irradiated (with a flux of 2.5 $\times 10^{14}$ photons cm⁻² s⁻¹) and heated in a controlled way up to 300 K.

- The evolution of the solid sample is monitored by in situ transmitance FTIR and UV spectroscopy, while the volatile species are monitored by quadrupole mass spectroscopy.
- The ultraviolet source used for irradiation is a microwave-discharged hydrogen flow lamp (MDHL).

イロト イポト イヨト イヨト

э

Experimental set-up.

UV-Irradiation

H₂ Lamp

Continuum emission source

Synchrotron

Monochromatic emission source

イロト イボト イヨト イヨト

э

VUV spectroscopy

Introduction VUV spectroscopy Results and Discussion

Carbon monoxide - CO

H₂ Lamp

UV-absorption cross section as a function of wavenumber and energy of CO ice at 8K.

Synchrotron

UV-absorption spectrum as a function of wavenumber of CO ice at 10K, Lu et al. 2005.

イロト イボト イヨト イヨト

Water - H₂O

H₂ Lamp

UV-absorption cross section as a function of wavenumber and energy of H_2O ice at 8K.

Synchrotron

UV-absorption spectrum as a function of wavenumber of H_2O ice at 10K, Lu *et al.* 2008.

イロト イボト イヨト イヨト

э

Introduction VUV spectroscopy Results and Discussion

Methanol - CH₃OH

H₂ Lamp

UV-absorption cross section as a function of wavenumber and energy of CH_3OH ice at 8K.

Synchrotron

UV-absorption spectrum as a function of wavenumber of CH₃OH ice at 10K, Kuo et al. 2007.

イロト イボト イヨト イヨト

ъ

So far...

イロト イボト イヨト イヨト

3

Results and Discussion

- We were able to give the UV-absorption cross section of all the species, all of them in a good agreement with the works made by Mason *et al* 2006, Lu *et al* 2005, 2008, and Kuo *et al* 2005.
- The results are pretty satisfactory proving the viability of this new, easy, and cheap way to do UV-spectroscopy.

- This work helps us to understand in which range of the UV-spectrum, and how much UV-photons the molecules absorb.
- These measured UV cross sections can be used in models to predict the behaviour of molecules in the presence of an UV-field like the ones in a star-forming region, and also can be used to a better understanding of the photo-dissociation and photo-desorption processes.

< ロ > < 同 > < 回 >

Thanks!!!

E 990