JWST IN A NUTSHELL

1

MIRI European

Consortium

Largest optical/IR Telescope in Space

- 6.5m diameter
- Segmented telescope (18)
- IR spectral range (0.6 to 28 microns)
- No cryogenics. Passive cooling (L2)

Science Themes

- First light
- Assembly of galaxies
- Birth of stars and protoplanetary systems
- Planetary systems and exoplanets

Schedule

- Launch by second half 2018
- Call for proposals: ~ Launch date 1 year
- Life 5 years (requirement) / 10 years (goal)

JWST. SCIENCE INSTRUMENTS

MIRI. JWST MID-INFRARED INSTRUMENT

TRULY UNIQUE:

- Spectral range: 5 28 µm
- Modes: Imager, coronagraph and spectrograph
- Resolution: First sub-arcsec mid-IR instr. in space

First instrument delivered to NASA: May 2012

3

Star & Planet Formation Workshop, ESAC

LABORAL OF CHORON

Table 1: Observing Modes for the MIRI Instrument on Webb

Mode	Wavelength (microns)	Pixel Size/Resolving Power	Field of View
Imaging	5.0–28	0.11 arcsec	1.23 × 1.88 arcmin
Single Slit Spectroscopy	5.0-~14	$\lambda/\Delta\lambda = ~100$ at 7.5 microns	0.6×5.5 arcsec slit
IFU Spectroscopy Coronagraphy	5.0-7.7	$\lambda/\Delta\lambda = 3500$	$3.0 \times 3.9 \text{ arcsec}$
	7.7–11.9	$\lambda/\Delta\lambda = 2800$	$3.5 imes 4.4 ext{ arcsec}$
	11.9–18.3	$\lambda/\Delta\lambda = 2700$	$5.2 \times 6.2 \text{ arcsec}$
	18.3–28.8	$\lambda/\Delta\lambda = 2200$	6.2×7.7 arcsec
	10.65	0.11 arcsec	24×24 arcsec
	11.4	0.11 arcsec	24×24 arcsec
	15.5	0.11 arcsec	24×24 arcsec
	23	0.11 arcsec	30×30 arcsec

4

MIRI European

Consortium

MIRI IMAGER

Filter name	Pass		
(and	band	Function	
wavelength)	<u>Δλ (μm)</u>		
F560W	1.2		
F770W	2.2		
F1000W	2.0		
F1130W	0.7		
F1280W	2.4		
F1500W	3.0	Imaging	
F1800W	3.0		
F2100W	5.0		
F2550W	4.0		
F2550WR	4.0		
P750L	5	R ~ 100 Spectroscopy	
F1065C	0.53		
F1140C	0.57	Coronagraphy	
F1550C	0.78	Coronagraphy	
F2300C	4.6		
FND	10	Target Acquisition	
FLENS	N/A	Alignment	
PAR+BLANK	N/A	Calibration	

http://www.roe.ac.uk/ukatc/consortium/miri/index.html

MIRI European Consortium

5

Star & Planet Formation Workshop, ESAC

MIRI IMAGING SENSITIVITY

MIRI 4QP CORONAGRAPH

Figure 46: Coronagraphic image at 11.4µm

Figure 47: Normalized coronagraphic profile (blue line) and PSF (green line) compared to simulated profiles (doted lines) at 11.4µm

From S. Ronayette et al., MIRIM FM Optical Tests Results, MIRIM-RP-00919-CEA

Star & Planet Formation Workshop, ESAC

MIRI IFS. CHARACTERISTICS

IFU Output Format Spectrometer input "slit"

Channel	1	2	3	4
Number of Slices (N)	21	17	16	12
Wavelength range (µm)	5.5 – 7.7	7.7 – 11.9	11.9 – 18.3	18.3 – 28.3
Slice width Pixel size (arcsec)	0.176 0.196	0.277 0.196	0.387 0.245	0.645 0.273
FoV (arcsec)	3x 3.87	3.5x 4.42	5.2x 6.19	6.7x 7.73
Resolving Power	2400 - 3700	2400 - 3600	2400 - 3600	2000 - 2400

MIRI European Consortinttp://www.roe.ac.uk/ukatc/consortium/miri/index.html

MIRI IFS SENSITIVITY

Science Example 1: Spatially resolved protostellar envelopes, disks and outflows

Biggest progress from ISO and Spitzer: Spatial resolution and sensitivity

150pc400pc3kpc5μm0.19"29AU76AU570AU15μm0.58"87AU232AU1740AU25μm0.96"144AU384AU2800AU

- Protostellar envelopes & disks have extensions between a few 100 and 1000AU (up to 10⁴AU) for low- and high-mass protostars.
- Outflow launching area likely within inner few AU. However, launching signatures observable on much larger scales.

Science Example 2: Exoplanet Characterisation and Detection

- MIRI strengths are planet characterisation, not "planet hunting" transit spectroscopy, and consequent requirements for stability
 - MIRI "niche" saturn-mass planets around young M dwarfs located in nearby moving groups and associations, a class of extrasolar planets that can only be accessed with JWST.

Figure 3 Comparison of spectral observations with broadband photometry and theoretical models of the dayside atmosphere of HD 189733b. The black points show the mean planet/star flux ratios for six second-order spectra $(5-8\,\mu\text{m})$ and four first-order spectra $(7.5-14\,\mu\text{m})$. The data have been binned by a factor of four after light-curve fitting (corresponding to two IRS resolution elements), and the plotted uncertainties reflect the standard error in the mean in each wavelength bin. The filled red circles show broadband measurements from ref. 5 at 3.6, 4.5, 5.8, 8.0, 16 and 24 μ m (error bars on this data, s.e.). The upper limit at 2.2 μ m is derived from Keck spectroscopy¹⁶. The red, blue and green traces are atmospheric model predictions for three values of a dayside–nightside heat redistribution parameter, P_m and two values of the extra upper-atmosphere opacity, κ_e . The model predictions have not been scaled in any way.

From Grillmair et al., Nature 2008.

ASTRONOMY FIRST HIGH SENSITIVE SUB-ARCSEC MID-IR INSTRUMENT

- > Full mid-IR spectral range coverage
- ➤ Stable sub-arcsec PSF (≈GTC)
- > Extreme sensitivity (x100 better than Spitzer)
- Imager + coronagraph + spectrograph capabilities combined

UNIQUE CAPABILITIES TO INVESTIGATE THE FORMATION OF STARS, PROTOPLANETARY DISKS AND EXOPLANETS

12

Star & Planet Formation Workshop, ESAC

MIRI. JWST MID-INFRARED INSTRUMENT

Star & Planet Formation Workshop, ESAC

MIRI European

Consortium

13