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High-precision calibration: A challenge to probe
the geometry of the background



Luminosity distances for background geometry

.
= °
o
d £
24 5r
+ 7]
. 2
22 o+ =F
Q
2 5
20 g 0 N a
b= Q (787 %} %
° %) [0] O OO ©
T 182 z M om iy
2 it
S W
g 16 ﬁﬁ*
- fE
14 o,
s A
o
124 3

100 10* 102 10° 100
Distance (Mpc comoving)

» Efficient way to probe distances from 10Mpc to 3Gpc
> HO

> w(z)



Specific calibration needs for luminosity distances
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A relative measurement of fluxes with wide-field instruments

> Relative calibration in time
» Relative calibration in space
» Relative calibration accross wavelength



Luminosity distances from SNe la: a flux and color
comparison accross redshift

N » Flux measurement in
o comparable ‘rest-frame’
/\n’\f» passbands

» However we look at
‘standardizable’ candles

™V » Many possible sources of
- /\/“\/\g differential extinction
Y » Color also matters:

/\/V\/\x uw=m-—M—p(c
- for type la supernovae:
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Required precision: back of the enveloppe computation
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Let us divide the HD in 2 bins

> o ~ 0.008 mag — o(A,) ~ 0.011

and assume that

> m ~ (g)and a1 ~ (g) — (r)
=1 > my ~ (i) and ¢ ~ (i) — (z)
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Calibration accuracy of the wide MegaCam instrument
over the last decade
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The quest for an accurate calibration transfer to
supernovae flux



Differential photometry

Measurement of SN/stars flux ratios in a collection of images
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The flux expected for image i at pixel p, reads:

Mip = [fi X ¢i(xp — xsn) + G (Ti(xp)) ® Ki + Si] Ri

Well under control. Two potential traps (see Astier et al. 2013)

» Different weighting schemes for the bright and faint object
would turn PSF errors into a bias
» The heart of the PSF is wavelength dependent

SN flux are relative to in-situ calibration references



The SNLS 2014 calibration references were build using

A position dependant model of the instrument response T (A, x)

» Scans of the filter transmission curves

» Measured transmission curves of the other elements

» Flatfield maps build every lunation from twilights

» A correction of the response (measured every 6 months)

A slightly evolved aperture photometry methods

» Large IQ-scaled apertures
» With specific handling of the background contamination

A specific set of observations of standard stars

» Short observing blocks

» Looping between science and calibration fields

> At similar airmass

> Relative aperture corrections corrects for systematic PSF
differences between science and calibration



Mapping the instrument response
(see Magnier & Cuillandre 2004, Regnault 2009)

it

Dithered observations of dense stellar fields

DEC (d

> 13 exposures

» Logarithmically increasing steps from 1.5" to
1/2 deg
4-10 independent grid datasets /band

e — measure a correction dzp to the twilight
R flat-field

v

v

Observation model

mapuy (X7 star) =

m(xqg, star) + dzp(x) + 5k(x)(g — i)
> m(xy) ~ 100000 nuisance parameters
» 0zp ~ 100 parameters

15 20 25 30 35



Wide-field specific effects corrected in this procedure

Flat-field pollution (~8%)

» Plate-scale variation (~3-4%)
» Ghost-pollution (5%)

Variation of the filter transmission

» 4% (color-dependent)

Variation of the aperture correction (1%)



Internal consistency of the reference catalog

RMS of the zero point variation across the focal plane in each
of the 5 years survey images with respect to the average
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External cross-check: Uniformity

Comparison with SDSS

8o —825 —f(g —i)

Ty, —T25 —f(g —i)

> The rms of the points in any of the panel is less than 3mmag



External cross-check: relative band calibration

Comparing 4 different paths
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» We claimed that the combination of the different path should
be accurate to the 5bmmag level



A recent confirmation (Scolnic et al. 2015)
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Limitation in the 2013 calibration

1) Statistics: the 2013 calibration relied on a small data sample

» 3 standard stars (~5 nights)
> now experiencing mmag accuracy transfer: 6 stars / 40 nights

2) Filter knowledge (again)

> Independant ZP determination on 6 stars
» With currently assumed filters (left)
» Shifting the g band filter by 1.6 nm (right)
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But the real limitation now is the cross-wavelength
calibration reference

Bohlin, Gordon & Tremblay 2014
e Rauch et al 2013 NLTE

model ) “
e 3 DA WD: G191B2B, e W‘"Mww | M
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But the real limitation now is the cross-wavelength

calibration reference

Uncertainty estimate based on:

o difference between 2 models

@ implementing similar physics

@ Amount to 4 mmag in color
for 300 < A < 1000nm

What about unaccounted physics
?

@ Metal lines found in high
resolution spectrum of
G191B2B

o Lyman/Balmer lines problem

@ Other 7
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Looks like we'll get calibration issues sorted in the end

» We think that we have achieved calibration transfer from white
dwarfs to Supernovae with an accuracy better than the
accuracy of the white dwarf themselves

» But all this was reverse engineering

» And the current accuracy level of the white dwarfs is
insufficient for future supernovae science

Let's try to do things in the right order



Toward a complete understanding of the
spectrophotometric calibration path: the DICE
experiment



The whole idea is to replace white dwarfs with POWR

POWR (NIST)

Calibrated
Si photodiode

Conventionnal
Telescope

DETECTORS

SOURCES

[SIRCUS/SCF (NIST))

Convenient and stable
calibrated source

(Astronomical sou rcesJ




The DICE experiment

We have build an experimental light source (Regnault et al.
2015)

To calibrate CFHT+MegaCam response



Design choice 1: LEDs

®(Tjunc, )

)

Quantum emmiter, emmission depends on:
@ junction temperature
@ current



Design choice 1: LEDs

(Tjunc. i)

2 i

Monitor:
@ Junction temperature
o Current
e Current source temperature



Design choice 1: LEDs

N loh
LA

Redundancy

e Photodiode current



Design choice 2: no optics

Optics could be used to
» Change the shape of the beam
> Select Wavelength

But would make the thing harder to control

Other solutions

> Use geometry to get the beam you want
> Precise knowledge of the source narrow spectrum



This gives the following design for a single channel:

LED board Off—axis monitoring photodiode Photodiode
1 T 1 T T board
. N i
Radiator 1 utput cone

P S it S |
V \Second

First Aperture Baffling Aperture




And we use 24 of them to cover the wavelength range:

900




The source was precisely characterized

Flux

[ Uniformity: ~ 1%
(Mapping precision: < 0.1%)
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Measurement Ill: In a temperature range

LED D1
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A convenient/extremely stable light-source: Done
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Let’s shoot with that in
MegaCam optics
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An alignement beam







Toward a complete model of the instrument

» There's a lot of information

in these images
» And the feature are distinct 2
» There is hope that they can

be used to constrain a model

of the instrument

We settled on developing such a model of MegaPrime

» predict ghosting in stars, galaxy and DICE images
> at all wavelengths



A test picture of Antares (from JCC)




Raytracing results looks promising
Antares
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Let's move the star




Let's move the star




Let's move the star




Let's move the star




Raytracer 7

Monte-Carlo with a raytracer is conceptualy simple, but

» O(103) rays / second
» 0(30010°) rays needed (with 64x64 superpixels)
» ~ 3-4 days / exposure (1 core)

> too slow !
(remember : we need effective transmissions => scans in \)

Why ?

» Many rays / many paths / large memory needed
> ray-surface intersection tests computationaly intensive

» We need ~ O(10°) rays / s / core to be effective



The beams in phase space...
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... have a simple structure

* So, we can propagate the ray densities in phase space, instead
of the individual rays.

« We can model propagation / reflection / refraction of paraxial
rays using linear optics

S\
X !
/1 /
Mi . ,J - fl//
7 z
py py

* The transfer function of the full system is the product of the
individual M, matrices.

» Attenuation is modeled with scalar modulation functions.



Then propagation through a path translates to products
with precomputed matrices

Our first tests show that with

» simple beam structures (stars or collection of stars)
> linear optics
One can deal with O(100) paths per second

» (using 1 single core and 64 x 64 superpixels)

Non-linear (polynomial optics Hullin et al. 2012)

» provide a straitforward
» but slower extension
> ongoing work



Exemples

Etoile simple 17 étoiles Flatfield
10000 ghosts 10000 ghosts Monte-Carlo (107 rayons/ghost)
2 minutes 34 minutes 30 minutes



StarDICE@OHP: doubling the model-based calibration

Point source H
@ finite distance OPTICG' SETUP

Distant point source

/ 1 -

/Focal plane”

~ flat field
(direct light)

Spot

i i Ghosts
= Calibration beam # science beam ! (direct light) ©

- ~ 3% of mirror surface Ideally, one wants the calibration beam

Mirror y Mirror to be identical to the science beam
- beam angle w.r.t. filter S distant point source |

» Differences between calibration and sience beam makes us
eavily dependant on the optics model

A calibrated artificial star can be build using only geometry

> If the telescope is small enough
> We called that StarDICE



StarDICE in a nutshell

Use a telescope

» Small enough that a small source at 200m illuminates the
entire pupil and appears point-like

» Large enough that it can reach CALSPEC WD (mag 13)

» Sweet spot for 16" telescopes

A dedicated one

» Repeat the measurements as long as necessary to get rid of

atmosphere
» If LIDAR and dedicated spectro are available on site that could

help



Proof of concept with a test setup @ observatoire de haute
provence

Rooms

OHP site



Beam width at 250m : ~9m

We took images of LEDs
with different filters and
images of 19 UMi with
green filter

Zasily illuminating the whole —————  ——————

=0 EEER

telescope OHP first light from a LED



Repeatability of artificial sources photometry
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» Short time goal is to the NIST-Star loop at the percent level
» Upgrade to something able to reach better accuracy if that

succeed



Conclusion

Getting calibration issues fixed for 2nd generation survey proved
harder than anticipated

» Comparison and collaboration with different instrument proved
useful

A lot going on to get readier for 4th generation

» Gaia is going to make ‘reverse engineering’ much easier anyway
> Hopefully we will have a working solution for ‘absolute
calibration’ for the next Euclid calibration workshop
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