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High-precision calibration: A challenge to probe
the geometry of the background



Luminosity distances for background geometry
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I Efficient way to probe distances from 10Mpc to 3Gpc
I H0
I w(z)



Specific calibration needs for luminosity distances
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A relative measurement of fluxes with wide-field instruments
I Relative calibration in time
I Relative calibration in space
I Relative calibration accross wavelength



Luminosity distances from SNe Ia: a flux and color
comparison accross redshift
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I Flux measurement in
comparable ‘rest-frame’
passbands

I However we look at
‘standardizable’ candles

I Many possible sources of
differential extinction

I Color also matters:

µ = m − M − βc
for type Ia supernovae:
β ∼ 3



Required precision: back of the enveloppe computation
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Let us divide the HD in 2 bins

I σstat ∼ 0.008 mag → σ(∆µ) ∼ 0.011

and assume that

I m1 ∼ 〈g〉 and c1 ∼ 〈g〉 − 〈r〉
I m2 ∼ 〈i〉 and c2 ∼ 〈i〉 − 〈z〉

∆µ ∼ m1 −m2 − β(c1 − c2)
∼ 2〈g〉 − 2〈i〉+ 3〈r〉 − 3〈z〉

⇒ σ(∆µ)cal ∼
√

10σ(cal)



Required precision: back of the enveloppe computation
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Calibration accuracy of the wide MegaCam instrument
over the last decade
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(Magnier & Cuillandre, 2004)

(Regnault et al, 2009)

(Betoule et al, 2013)



The quest for an accurate calibration transfer to
supernovae flux



Differential photometry
Measurement of SN/stars flux ratios in a collection of images

The flux expected for image i at pixel p, reads:

Mi ,p = [fi × φi(xp − xSN) + G (Ti(xp)) ⊗ Ki + Si ] Ri

Well under control. Two potential traps (see Astier et al. 2013)

I Different weighting schemes for the bright and faint object
would turn PSF errors into a bias

I The heart of the PSF is wavelength dependent

SN flux are relative to in-situ calibration references



The SNLS 2014 calibration references were build using
A position dependant model of the instrument response T (λ, x)

I Scans of the filter transmission curves
I Measured transmission curves of the other elements
I Flatfield maps build every lunation from twilights
I A correction of the response (measured every 6 months)

A slightly evolved aperture photometry methods
I Large IQ-scaled apertures
I With specific handling of the background contamination

A specific set of observations of standard stars
I Short observing blocks
I Looping between science and calibration fields
I At similar airmass
I Relative aperture corrections corrects for systematic PSF

differences between science and calibration



Mapping the instrument response
(see Magnier & Cuillandre 2004, Regnault 2009)



Wide-field specific effects corrected in this procedure

Flat-field pollution (~8%)

I Plate-scale variation (~3-4%)
I Ghost-pollution (5%)

Variation of the filter transmission
I 4% (color-dependent)

Variation of the aperture correction (1%)



Internal consistency of the reference catalog

RMS of the zero point variation across the focal plane in each
of the 5 years survey images with respect to the average
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Typically, an individual survey image agrees with the reference
catalog to the 5 mmag level



External cross-check: Uniformity

Comparison with SDSS
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I The rms of the points in any of the panel is less than 3mmag



External cross-check: relative band calibration

Comparing 4 different paths

SNLS BD+17
(via Landolt)
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I We claimed that the combination of the different path should
be accurate to the 5mmag level



A recent confirmation (Scolnic et al. 2015)
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Limitation in the 2013 calibration
1) Statistics: the 2013 calibration relied on a small data sample

I 3 standard stars (~5 nights)
I now experiencing mmag accuracy transfer: 6 stars / 40 nights

2) Filter knowledge (again)

I Independant ZP determination on 6 stars
I With currently assumed filters (left)
I Shifting the g band filter by 1.6 nm (right)
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But the real limitation now is the cross-wavelength
calibration reference



But the real limitation now is the cross-wavelength
calibration reference



Looks like we’ll get calibration issues sorted in the end

I We think that we have achieved calibration transfer from white
dwarfs to Supernovae with an accuracy better than the
accuracy of the white dwarf themselves

I But all this was reverse engineering
I And the current accuracy level of the white dwarfs is

insufficient for future supernovae science

Let’s try to do things in the right order



Toward a complete understanding of the
spectrophotometric calibration path: the DICE

experiment



The whole idea is to replace white dwarfs with POWR



The DICE experiment

We have build an experimental light source (Regnault et al.
2015)

To calibrate CFHT+MegaCam response



Design choice 1: LEDs



Design choice 1: LEDs



Design choice 1: LEDs



Design choice 2: no optics

Optics could be used to
I Change the shape of the beam
I Select Wavelength

But would make the thing harder to control

Other solutions
I Use geometry to get the beam you want
I Precise knowledge of the source narrow spectrum



This gives the following design for a single channel:

Second

Aperture

Output coneRadiator

BafflingFirst Aperture

Off−axis monitoring photodiode PhotodiodeLED  board

board



And we use 24 of them to cover the wavelength range:
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The source was precisely characterized

Flux

And spectrum

450 500 550 600 650 700
λ [nm]

0.000

0.005

0.010

0.015

0.020

0.025

Ph
ot

o-
cu

rr
en

t  
 [a

rb
itr

ar
y 

un
its

]

5 0 5
angle [o ]

0.2
0.1
0.0
0.1
0.2

λ
m

ea
n

[n
m

]

550 560 570 580 590 600 610 620 630 640
λ [nm]

0.00

0.01

0.02

0.03

0.04

0.05

Ph
ot

o-
cu

rr
en

t  
 [a

rb
itr

ar
y 

un
its

]

15 10 5 0 5 10 15
angle [o ]

0.2
0.1
0.0
0.1
0.2

λ
m

ea
n

[n
m

]



Measurement III: In a temperature range
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A convenient/extremely stable light-source: Done
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Let’s shoot with that in
MegaCam optics



An alignement beam



A flat-field illumination



Toward a complete model of the instrument

I There’s a lot of information
in these images

I And the feature are distinct
I There is hope that they can

be used to constrain a model
of the instrument

We settled on developing such a model of MegaPrime
I predict ghosting in stars, galaxy and DICE images
I at all wavelengths



A test picture of Antares (from JCC)



Raytracing results looks promising



Let’s move the star



Let’s move the star



Let’s move the star



Let’s move the star



Raytracer ?

Monte-Carlo with a raytracer is conceptualy simple, but
I O(103) rays / second
I O(300106) rays needed (with 64x64 superpixels)
I ~ 3-4 days / exposure (1 core)
I too slow !

(remember : we need effective transmissions => scans in λ)

Why ?
I Many rays / many paths / large memory needed
I ray-surface intersection tests computationaly intensive
I We need ~ O(105) rays / s / core to be effective







Then propagation through a path translates to products
with precomputed matrices

Our first tests show that with
I simple beam structures (stars or collection of stars)
I linear optics

One can deal with O(100) paths per second

I (using 1 single core and 64 x 64 superpixels)

Non-linear (polynomial optics Hullin et al. 2012)

I provide a straitforward
I but slower extension
I ongoing work



Exemples

31

Etoile simple
10000 ghosts
2 minutes

17 étoiles
10000 ghosts
34 minutes

Flatfield
MonteCarlo (107 rayons/ghost)
30 minutes



StarDICE@OHP: doubling the model-based calibration

I Differences between calibration and sience beam makes us
eavily dependant on the optics model

A calibrated artificial star can be build using only geometry
I If the telescope is small enough
I We called that StarDICE



StarDICE in a nutshell

Use a telescope
I Small enough that a small source at 200m illuminates the

entire pupil and appears point-like
I Large enough that it can reach CALSPEC WD (mag 13)
I Sweet spot for 16" telescopes

A dedicated one
I Repeat the measurements as long as necessary to get rid of

atmosphere
I If LIDAR and dedicated spectro are available on site that could

help



Proof of concept with a test setup @ observatoire de haute
provence





Repeatability of artificial sources photometry

I Short time goal is to the NIST-Star loop at the percent level
I Upgrade to something able to reach better accuracy if that

succeed



Conclusion

Getting calibration issues fixed for 2nd generation survey proved
harder than anticipated

I Comparison and collaboration with different instrument proved
useful

A lot going on to get readier for 4th generation
I Gaia is going to make ‘reverse engineering’ much easier anyway
I Hopefully we will have a working solution for ‘absolute

calibration’ for the next Euclid calibration workshop
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