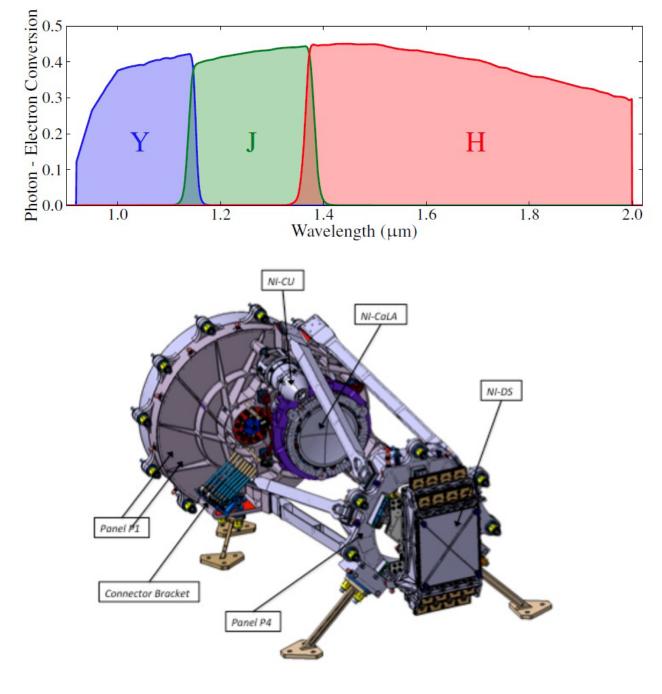
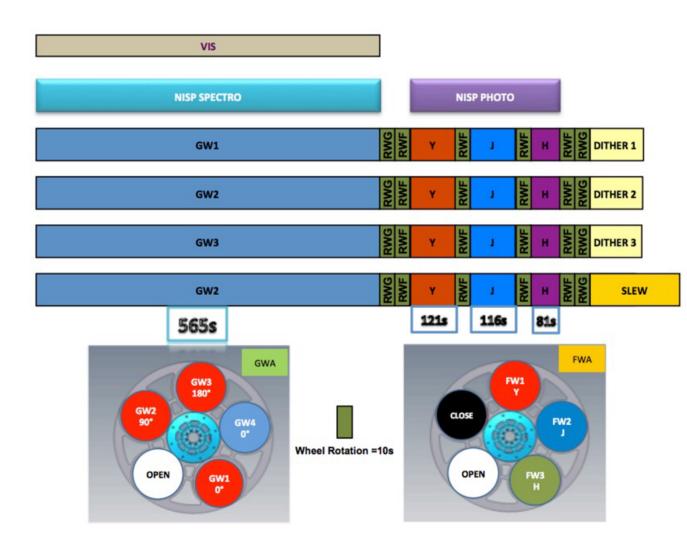
Overview of NISP Calibration NIR/SGS perspective

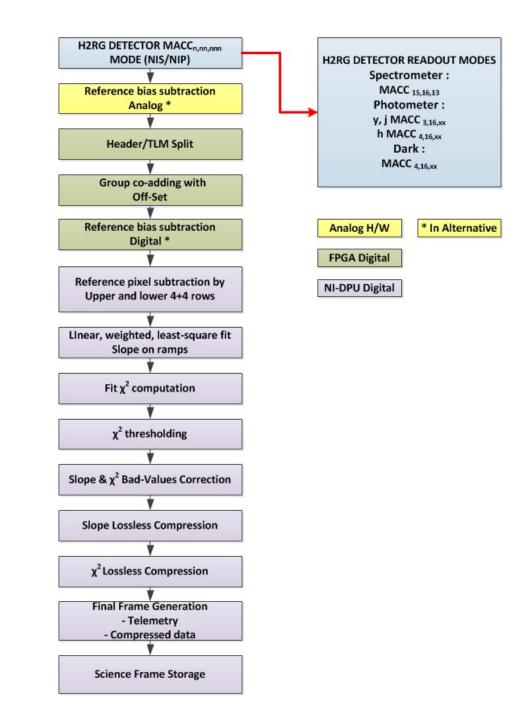

P. Capak, G. Polenta, NISP Team

Overview

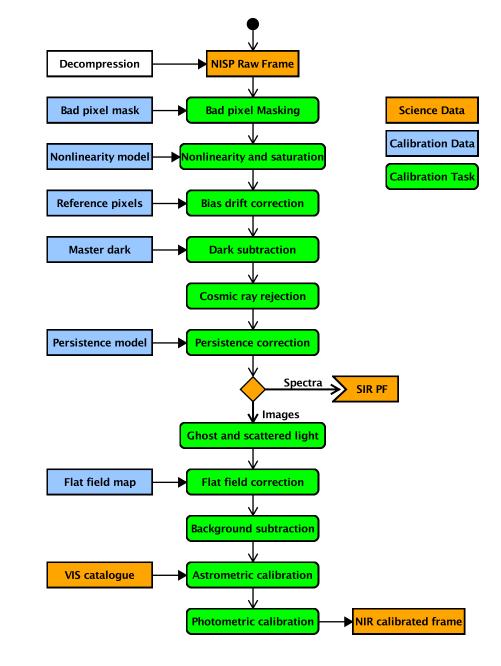
- Description of the NISP Instrument
- Calibration Requirements
 - Photometry
 - Spectroscopy
- Calibration Philosophy


NISP Instrument

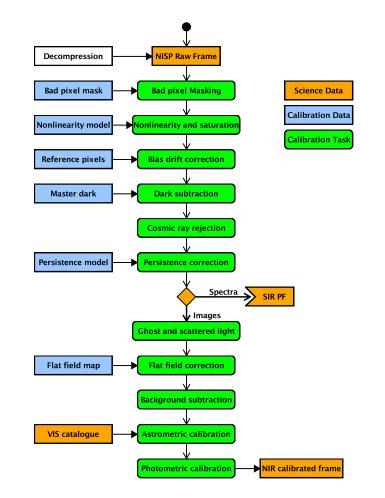
- 0.55 deg FOV, 0.3" pixels
 - 16 HAWAII-2RG HgCdTe detectors
- Photometry in 3 bands, 0.9-2um
 Y, J, H
- Spectroscopy in 4 GRISMS
 - 3 cover 1.25-1.85um
 - At 0, 90, 180 degrees
 - 1 covers 0.92-1.25um at 0 degrees
 - only in the deep field
 - R>380 for a 0.5" object
- Dark stop/shutter


NISP Observing

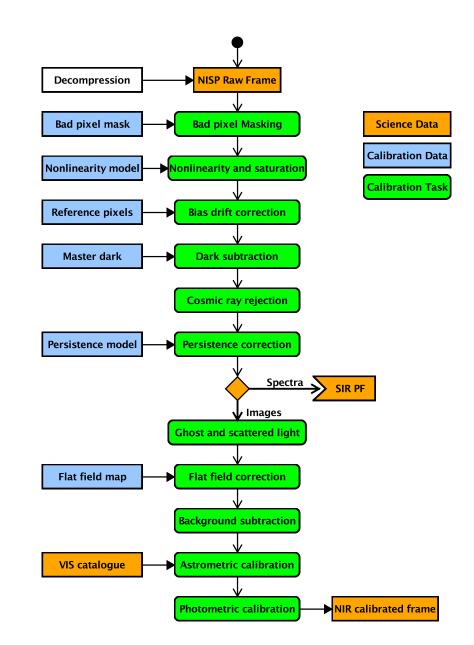
- Normal "Wide Field" observing
 - ~20 fields per day, 4 dithers per field
 - Dither 1, 565s red 0 deg GRISM
 - 121s Y, 116s J, 81s H
 - Dither 2, 565s red 90 deg GRISM
 - Same Photometry
 - Dither 3, 565s red 180 deg GRISM
 - Same photometry
 - Dither 4, 565s red 90 deg GRISM
 - Same photometry
 - Dark during slew


NISP Onboard Processing

- Detectors continuously read on board
 - To reduce noise
- Telemetry limits data downlink rate
 - Must combine reads on board
 - Only downlink image + flags
 - Chi-sq for Spectroscopy
 - 1-bit threshold for imaging
 - Will get full data set for some pixels
- Must calibrate processed data


Calibration Requirements

- Photometry
 - Stability over time
 - Sources from photo-z bias stability requirement in SCI-RD
- Spectroscopy
 - Stability of wavelength calibration
 - Sources from redshift precision requirement for BAO in the SCI-RD
 - Knowledge of sensitivity variation
 - Sources from need to know sampling mask for BAO in SCI-RD


Calibration Requirements - Challenges

- Need very high stability
 - Not only measured but verified with errors
- On-board processing
 - Loss of information
- Tracking sensitivity
 - Noise, masks, systematics

Calibration Philosophy

- Photometry and Spectroscopy share the basic calibration pipeline
 - Bad pixels
 - Bias/Dark
 - Non-linearity/Saturation
 - Persistence mitigation
 - Cosmic ray removal
- Calibrate as much as possible on the ground
 - Verify and re-calibrate in flight

Photometric Calibration Strategy

- 1.5% per band photometric stability driving requirement
- Must measure and verify performance over time
- Will require re-processing of data
 - Must extrapolate calibration to future to enable pipeline processing
 - There will have to be "version" flags in the MDB
- Detector chain calibration shared with spectroscopy
- Absolute calibration to 5% goal

- Bad Pixels
 - Active trending
 - Calibration and science data
- Darks
 - Trend darks over time
 - Possible variation with temperature and age
- Flat
 - Small scale flat, determined with lamps
 - Large scale flat, self calibration field
 - Possible self-calibration with data
 - May interact with non-linearity
- Non-linearity
 - Measured with lamps
 - trended with time

Spectral Calibration Strategy

- BAO sensitive function main driver
 - <0.5% knowledge of field to field variation in spectrophotometric depth
 - 1.5% relative stability per object
 - 5% absolute spectrophotometric calibration goal
- Plan based on HST WFC3 heritage with some differences
 - Long-term spectrophotometric stability
 - Wide field of view

- Must rely on ground calibration for spectral response function
 - Spectra flats and QE measurements
 - Can not be done in detail during flight
- Can only measure/verify in flight for limited cases
 - Only 5 lamps on NIR
 - Establish calibration during PV phase based on ground data
 - Monitor during mission

Detector Chain Calibration

Error Source	Allocated Margin	Requirement	Implementation
Bias	0.3%	R-CAL-B-NP-1410	R-GDP-CAL-142
Dark Subtraction	0.5%	R-CAL-B-NP-1420	R-GDP-CAL-140
Non-linearity	0.3%	R-CAL-B-NP-1440	R-GDP-CAL-141
Intra-pixel sensitivity	0.47%	R-CAL-B-NP-1460	Ground Test
Persistence	0.5%	R-CAL-B-NP-1470	
Electronic Cross Talk	0.3%	R-CAL-B-NP-1480	Ground Test
Margin	0.1%		
Total	1.0%	R-CAL-A-NP-1000 R-CAL-B-NP-1400	

Detector Chain

- Bias
 - Reference Pixels
- Dark
 - On the order of ~480 darks to get 0.5% calibration
 - ~6 days of clock time
 - Should try to match exposure times
 - Monitoring to ensure dark does not vary by more than 2.8% on timescales less than a month
 - Need accurate persistence mask/correction
- Nonlinearity
 - Expensive because we need to download full ramps
 - Calibrations every ~6 months
 - Onboard lamps
 - Interpolate between
 - Verify with sample ramps

- Intra-Pixel Sensitivity
 - Ground calibration + dithering
- Persistence
 - Ground calibration
 - Darks at end of each sequence
 - Resets
- Electronic Cross Talk
 - Ground testing

Relative Photometry Calibration Plan

Error Source	Allocated Margin	Requirement	Implementation
Detector Chain	1.0%	R-CAL-B-NP-1400	R-GDP-CAL-140,141,142
Small Scale Flat	0.5%	R-CAL-B-NP-1100	R-GDP-CAL-120
Large Scale Flat	0.6%	R-CAL-B-NP-1200	R-GDP-CAL-130
Source Extraction	0.6%	R-CAL-B-NP-1300	R-GDP-CAL-170
Background Subtraction	0.5%	R-CAL-B-NP-1500	R-GDP-CAL-160
Data Processing	0.14%		
Margin	0.1%		
Total	1.5%	R-CAL-A-NP-1000	

Photometry Calibration

- Small Scale Flat (<100 pixels)
 - Internal LED lamps
 - Ground testing of QE and Lamp illumination
- Large Scale Flat (>100 pixels)
 - Generated via self calibration
 - Repeat observations of objects
 - Self calibration field
 - ~4 deg, 60 dithers
 - Same exposure time as science data
 - ~ Monthly visits
 - Also use science data
 - Requires optimization of dither pattern
 - Not guaranteed to meet requirements

- Source Extraction
 - Flow down from GDPRD
 - See OU-MER presentation
 - Implicit requirement on PRF knowledge
- Background subtraction
 - Develop background illumination model

Absolute Photometric Calibration

Error Source	Allocated Margin	Requirement	Implementation
Relative measurement error	1.5%	R-CAL-B-NP-3210,3220	
Measurement Noise	0.5%	R-CAL-B-NP-3100	
Error in absolute knowledge of transmission function	2%	R-CAL-B-NP-3200	
Knowledge of spectrophotometric response Per 10nm	3.8%	R-CAL-B-NP-3210, 3220	
Error in knowledge of standards	2%	R-CAL-B-NP-3300	
Margin	0.5%		
Total	5%	G-CAL-A-NP-3000	

Absolute Photometric Calibration

- Determine spectral response in ground calibration
 - Telescope responses 20nm steps
 - Instrument response 10nm steps
 - Filter response 10 nm steps
 - Detector QE 10nm steps

- Standard Stars
 - Range of exposure times
 - Multiple stars ranging from 14-22nd ABmag
 - >50 observations per star per year
 - Yearly observations of standards

Overview of Early Calibration

- Ground
 - Darks
 - Bias
 - Bad pixels
 - Non-linearity
 - Inter-Pixel Capacitance
 - Intra-pixel sensitivity variation
 - Mono-chromatic flats
 - Per-pixel QE
 - Filter, Instrument, Telescope throughput
 - Persistence
 - Astrometric model

- SV phase
 - Darks
 - Bias
 - Bad pixels
 - Non-linearity
 - Lamp flats
 - Self-calibrated flats
 - PSF verification of stars
 - Persistence model verification
 - On-board processing verification
 - Standard star observations
 - Astrometric calibration

In Mission Calibration

- Continuous
 - Bad Pixels
 - Bias
 - Persistence
 - On-board processing verification
- Once a month
 - Darks
 - Flats
- Every six months or more
 - Non-linearity
 - Astrometry
 - Calibration stars

- Will require re-processing
 - Updates and trending of calibrations
 - Nominal cadence ~6 months

Spectroscopy Wavelength Calibration Plan

Error Source	Allocated Margin	Requirement	Implementation
Zero-Point determination	0.6 pixels	R-CAL-B-NS-1100	R-GDP-CAL-171,175
Solution Calibration	0.5 pixels	R-CAL-B-NS-1200	
Total	0.8 pixels	R-CAL-A-NS-1000	

Wavelength Calibration

- Zero-point calibration
 - Astrometric calibration
 - Imaging and spectroscopy
 - Zeroth order to imaging calibration
 - Ground calibration needed
 - Verified in flight

- Relative calibration
 - Ground calibration
 - relative order positions
 - Wavelength solution
 - In-flight
 - spectral trace calibration
 - Planetary Nebula
 - Open Clusters
 - ~6 month cadence

Relative Spectroscopy Calibration Plan

Error Source	Allocated Margin	Requirement	Implementation
Detector Chain	1.0%	R-CAL-B-NS-2400	R-GDP-CAL-140,141,142
Small Scale Flat	2.5%	R-CAL-B-NS-2100	R-GDP-CAL-120
Large Scale Flat	2.5%	R-CAL-B-NS-2200	R-GDP-CAL-130
Source Extraction	1%	R-CAL-B-NS-2300	R-GDP-CAL-170
Background Subtraction	1%	R-CAL-B-NS-2600	R-GDP-CAL-160
Margin	0.7%		
Total	4%	R-CAL-A-NS-2000	

Relative Spectroscopy Calibration Plan

- Detector chain shared with photometry
- Small Scale Flat (<100 pixels)
 - Ground based QE measurements
 - Detector, GRISM, Optics, Telescope
 - Flat field lamps in flight
 - Monthly cadence
- Large Scale Flat
 - Open cluster flat field observations
 - Yearly
 - Self calibration based on data

- Source extraction
 - GDPRD requirement
- Background subtraction
 - GDPRD requirement

Absolute Spectroscopic Calibration

Error Source	Allocated Margin	Requirement	Implementation
Relative measurement error	1.5%	R-CAL-B-NP-3210,3220	
Measurement Noise	0.5%	R-CAL-B-NP-3100	
Error in absolute knowledge of transmission function	2%	R-CAL-B-NP-3200	
Knowledge of spectrophotometric response Per 10nm	3.8%	R-CAL-B-NP-3210, 3220	
Error in knowledge of standards	2%	R-CAL-B-NP-3300	
Margin	0.5%		
Total	5%	G-CAL-A-NP-3000	

Absolute Spectroscopic Calibration

- Same plan as photometry
- Determine spectral response in ground calibration
 - Telescope responses 20nm steps
 - Instrument response 10nm steps
 - Filter response 10 nm steps
 - Detector QE 10nm steps

- Standard Stars
 - Range of exposure times
 - Multiple stars ranging from 14-22nd ABmag
 - >50 observations per star per year
 - Yearly observations of standards