Calibrating Legacy Science in Euclid

Christopher J. Conselice (University Nottingham)

SWG Nearby Universe and Legacy Requirements co-lead

History of surveys for discovery & legacy science

- Started with the Palomar Observatory Sky Survey (1958), later digitized into the digital sky survey (DSS) (1994)
- Truly came of age with the Sloan Digital Sky Survey (SDSS)

Area	# papers	Percentage	
Cosmology	93	11.2%	2%
Supernovae	62	7.4%	81 %
Legacy	679	81.4%	

- SDSS has set the standard most science from large astronomy surveys will be legacy
- Best prepare as well as we can for this, although always unknowns

What kind of data will Euclid will provide us with?

- Cosmology lensing, clustering, etc.
- Extragalactic science we can do with Euclid igodol+Very large samples \rightarrow distribution functions, environment +Exquisite imaging \rightarrow morphological studies, mergers, strong galaxy-scale lenses, etc +Lensing → Galaxy evolution as a function of halo properties, galaxy alignment +Very large volume \rightarrow Rare sources, probing the extremes +Spectroscopy \rightarrow Metals, star formation at z>1

Euclid Wide and Deep Surveys probe unique parameter space

The equivalent 5 year Wide and Deep surveys would take ~700 and 72 years, respectively, to carry out with VISTA

Automation is important – however, must be tested in detail

An unprecedented area for studying distant resolve galaxies

Has all the problems of deep HST and wide-field SDSS imaging

Current best estimates of sources detected with Euclid

What	Euclid	Before Euclid
Galaxies at 1 <z<3 estimates<="" good="" mass="" td="" with=""><td>~2x10⁸</td><td>~5x10⁶</td></z<3>	~2x10 ⁸	~5x10 ⁶
Massive galaxies (1 <z<3) <br="" w="">spectra</z<3)>	~few x 10 ³	~few tens
Hα emitters/metal abundance in z~2-3	~4x10 ⁷ /10 ⁴	~104/~102?
Galaxies in massive clusters at z>1	~2x10 ⁴	~10 ³ ?
Type 2 AGN (0.7 <z<2)< td=""><td>~104</td><td><10³</td></z<2)<>	~104	<10 ³
Dwarf galaxies	~10 ⁵	
T _{eff} ~400K Y dwarfs	~few 10 ²	<10
Strongly lensed galaxy-scale lenses	~300,000	~10-100
z > 8 QSOs	~30	None

Calibration for legacy science

- Accurate photometric redshifts for most/all galaxies at level of $\Delta z/(1+z) < 0.04$ (discussed earlier)
- Differing levels of absolute and relative photometry, depending on the science
- Relative photometry accuracy of a few % across large fields of view for low-surface brightness science and large galaxies

ec

Legacy Requirements Document

EUCL-LEI-SGS-REQ-00269 Version: 10 Date: 1/5/2012 Page:

Ref.

R-LRD-009	Measured parameters on detected objects shall include (TBD): RA, Dec, and positional error ellipse Ellipticity, orientation Quality control flags
R-LRD-011	Photometric measurements on each detected object shall include (TBD): Psf magnitude Magnitudes in a series of elliptical apertures Deconvolved 2D bulge/disk decomposition Petrosian magnitudes Kron magnitudes 'total' magnitude Concentration Gini coefficient Asymmetry parameter M20 parameter Clumpiness parameter

Contact Legacy Science Document coordinators: C. Conselice, J. Brinchmann

Legacy Science Preparation for Calibration + Think about why/what to measure and to what accuracy?

- + Use simulations to optimize observing strategy and to understand the data once it appears
- + Degrading existing HST images few ground based have as good resolution as Euclid – but HST is limited
- + 'Redshift' nearby galaxy images and spectra at high redshifts
- + Determine how parameters change as f(z)
- + What samples should be used?

Some early simulations of the VIS imaging

F435W to G band

F814W to VIS* band

FI25W to J band

HST images 'Euclidized'

OU-MER: Adriano Fontana

Investigating: parameters of galaxies

From L. Pozzetti

Simulated Euclid SEDs from CANDELS

Study on Euclid-like spectra

work done by A.Citro, S. Quai, A. Cimatti, L. Pozzetti, M. Moresco

Preliminary analysis on **full spectral fitting** have been extended to Euclid-like simulated spectra: SFH, age, stellar metallicity and A_v can be recovered with good accuracy at high-z for SNR≈20-30 (stacked spectra).

It has been also estimated the probability of measuring **Lick and continuum** indices as a function of SNR, age and redshift, together with signal-to-noise ratio and accuracy.

Concentration

Unresolved/faint — very high concentration

Simulations of Euclid imaging

Important for also determining fidelity of shapes and morphologies

M. Huertas-Company

UVJ Colour-Colour plot for z > 1 galaxies

Resolved Stellar Populations

Can resolve stellar populations out to 5 Mpc with Euclid

Near-IR + optical a powerful approach for studying these stellar populations and thus the history of galaxy formation

Accurate absolute photometry essential for this

Extensive LSB structures around nearby galaxies

(5) Ш XX XIX XVI McConnachie et al. 2009

Martinez-Delgado et al. 2010

For legacy science we need

- Absolute photometry for nearby resolved stellar populations with accuracy ~0.01 mags
- Need absolute photometry to level of <0.03 mags for measurements of galaxy photometry (absolute mags, colours, stellar masses, etc)
- Relative photometry across field of view for lower surface brightness measurements for galaxies, as well as in morphological studies.
- Need to have at most a few % gradient in relative calibration across 10s arcmin the sizes of the largest nearby galaxies

Example of preparation work needed: galaxy detection and segmentation mapping

Important for:

- Photometry
- Galaxy positions/catalogs
- Clustering measures
- Measures of overdensities
- Influence most areas in Euclid
- Measuring clusters

Typical deep field segmentation map

> All galaxies a few arcsec in size in these deep fields (e.g., GOODS, CANDELS)

Problems with overdense regions

Extract multiple objects in same segmentation area

Problem of 'large galaxies'

Shredding of galaxies – well known problem for larger galaxies

Example using typical CANDELS and Frontier Fields HST Sextractor detection parameters on HST image of M51 – each colour a separate 'galaxy' in catalog

Well known problem in SDSS

Must do simulations beyond just using HST deep field imaging

Is this really a problem? What fraction of Euclid imaging will contain these large galaxies?

$$R_e = \gamma \left(\frac{\mathcal{M}_*}{\mathcal{M}_{\odot}}\right)^{\alpha} \left(1 + \frac{\mathcal{M}_*}{\mathcal{M}_0}\right)^{\beta - \alpha}$$

$$R_e = a \left(rac{\mathcal{M}_*}{\mathcal{M}_{\odot}}
ight)^b$$

Size-mass relations (Lange et al. 2015)

Integrate sizes with number densities

Baldry et al. 2012

Shows that up to >2% of sky occupied by large galaxies not including clusters

An unnecessary source of systematic errors

Calibration must take into account the non-uniform nature of the universe

Future for Legacy Preparation in Euclid

+ Carefully consider which parameters to measure, and how to quantify properties, to derive galaxy evolution (a) criteria for certain parameters - size, S/N, colour limit (b) interact with science working groups + Simulation work needs to be done. Optimize dithering strategy, etc. as well as for understanding output + Consider how parameters can be used – (a) define galaxy types, find mergers, other galaxy sci. (b) use in other areas – clustering, lensing and photo-zs + Need to understand how the limits is photometric accuracy can affect the legacy science requirements. Once these are known we can determine what we can do