


Calibration Work Shop

#### Organisation



Interfaces :

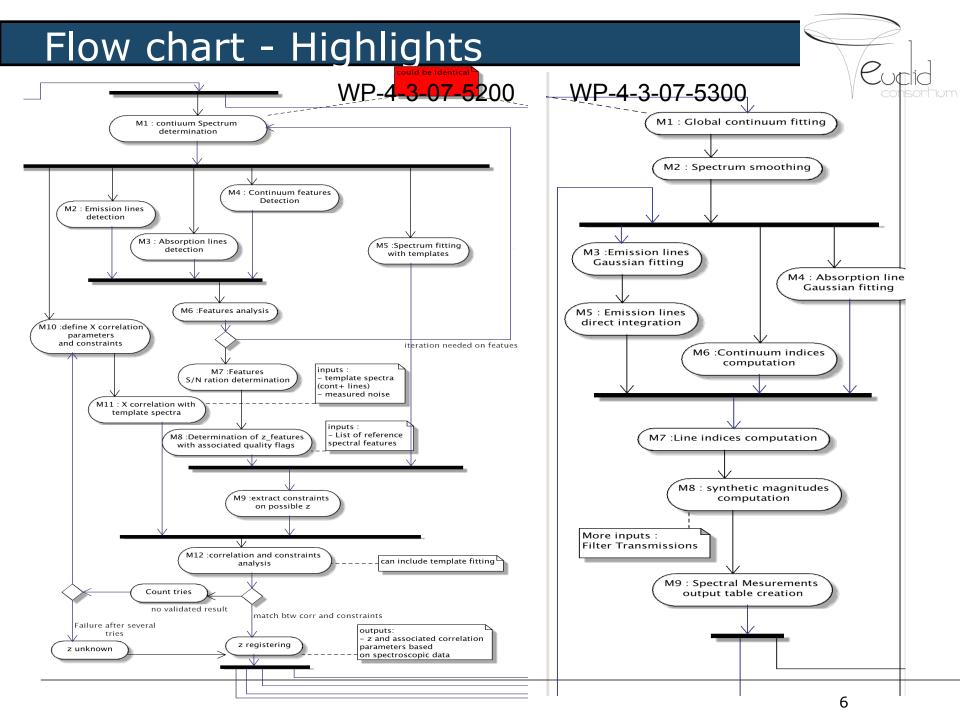
- PF interfaces :
  - SIM
  - SIR
  - PHZ
- SWG interfaces : - GC
- Calibration
- SDC dev :
  - SDC-FR
  - SDC-IT

### Goals



Goal of the PF-SPE :

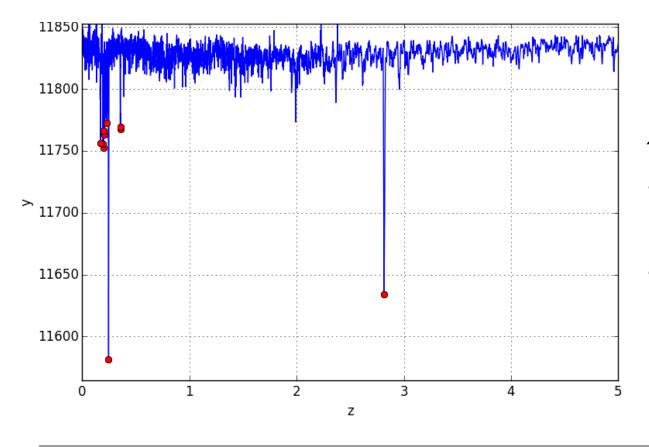
- PF-SPE should deliver redshift and spectrophotometric information for each spectrum available, observed with NISP
- PF-SPE should provide
  - Best redshift for each galaxy, and list of redshifts with quality flags
  - PDF for redshift measurement
  - Measurements of spectral features (Emission Lines, Absorption lines, spectral breaks, continuum)
  - Spectral classification of each object
- INPUTS : 1D Spectra and associated 1D Noise from PF-SIR.
  - 1D decontaminated combined spectra
  - Single 1D decontaminated spectra for each single roll observation.
  - 1D Covariance matrix


### Organisation



| Wp number      | Name                             | Leader        | SDC-DEV |
|----------------|----------------------------------|---------------|---------|
| WP-4-3-07-1000 | SPE Management                   | O. Le Fèvre   |         |
| WP-4-3-07-2100 | SDC Interfaces                   | P.Y. Chabaud  |         |
| WP-4-3-07-2200 | Interfaces - OUs                 | C. Surace     |         |
| WP-4-3-07-3000 | Requirements and V&V             | V. Le Brun    | FR      |
| WP-4-3-07-4100 | Data Model                       | J.C. Meunier  | FR      |
| WP-4-3-07-4200 | Data Calibration                 | B. Epinat     | FR      |
| WP-4-3-07-4300 | Quality Mask                     | C. Surace     | FR      |
| WP-4-3-07-5200 | Lines id. and z measurement      | V. Le Brun    | FR      |
| WP-4-3-07-5300 | Spectral features Measurement    | M. Moresco    | IT      |
| WP-4-3-07-5400 | Z Quality                        | O. Le Fevre   | FR      |
| WP-4-3-07-5500 | Rest Frame Parameters            | L. Tasca      | FR      |
| WP-4-3-07-5600 | Spectro photo classification     | O. Ilbert     | FR      |
| WP-4-3-07-6000 | Infrastructure                   | T. Fenouillet | FR      |
| WP-4-4-03-2207 | SDC-FR DEV SPE PF implementation | P.Y. Chabaud  | FR      |
| WP-4-4-03-2307 | SDC-FR DEV Support to SPE PF V&V | T Fenouillet  | FR      |

### **PF-SPE Implementation**

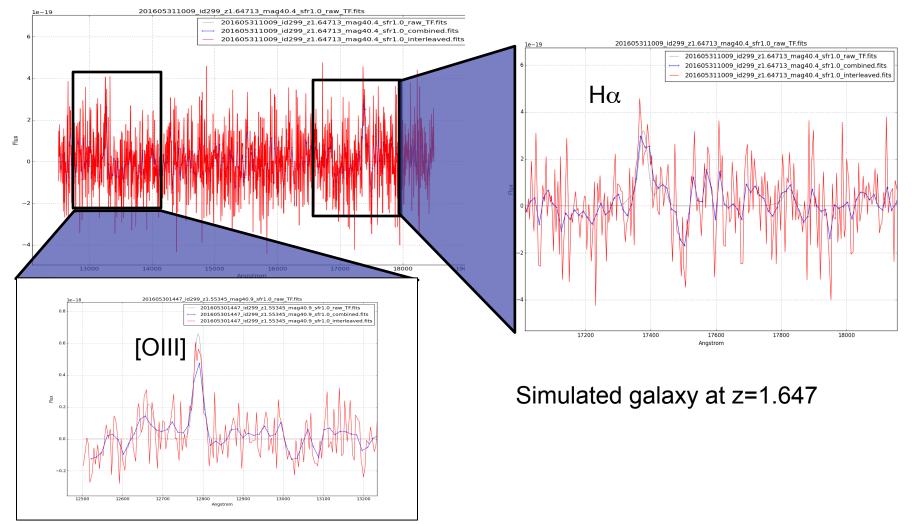

- The PF has been split in Processing Elements. Each PE has been split into Modules.(links are descriptions of the PE in the EUCLID SGS redmine site)
- PE5200 : Lines id. and redshift measurement
  - http://euclid.roe.ac.uk/projects/ou-spe/wiki/5200 v01 Describe modules in prototype
- PE5300 : Spectral features Measurement
  - <u>http://euclid.roe.ac.uk/projects/spe\_pf/wiki/PE5300</u>
- PE5400 : Redshift Quality
  - http://euclid.roe.ac.uk/projects/ou-spe/wiki/5400 v01 Describe modules in prototype
- PE5500 : Rest Frame Parameters
  - <u>http://euclid.roe.ac.uk/projects/ou-spe/wiki/5500\_v01\_Describe\_modules\_in\_prototype</u>
- PE5600 : Spectro photometric classification
  - <u>http://euclid.roe.ac.uk/projects/ou-spe/wiki/Wp-4-3-07-5600-Description</u>



### Algorithms: PE5200

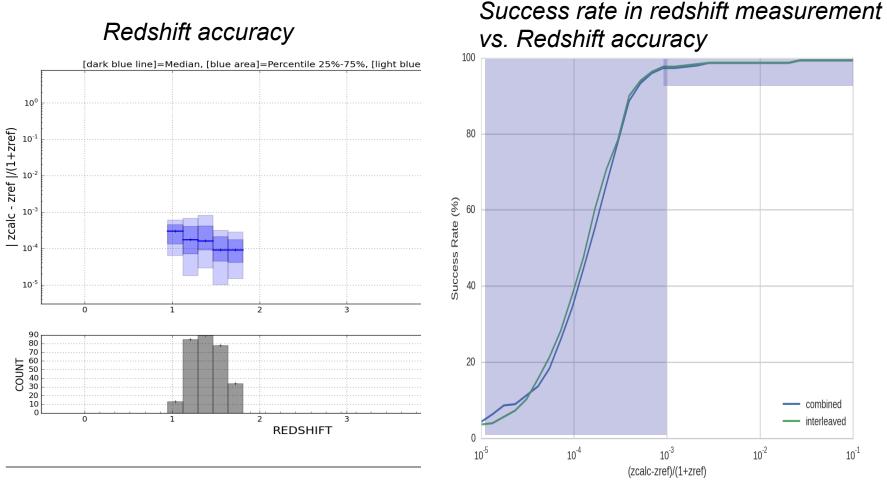
Cross correlation with templates:

- Minimisation of the  $\chi^2$  function vs. redshift and maximisation of the likelihood




#### $\chi^2$ function vs. Redshift

- The red points are the 10 best redshifts (peaks in  $\chi^2$
- Each redshift value has an associated quality (probability)

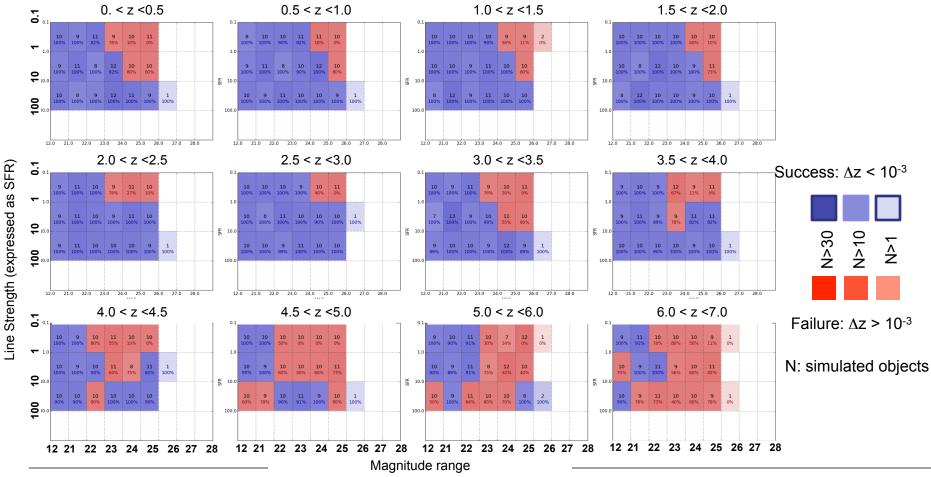

### Test Status and Results: PE5200

# Simulated spectra from internal data, with gaussian noise, no contamination noise. SIM simulated spectra will be next (beeing tested)



### Test Status and Results: PE5200

Example of the analysis of simulated spectra using 4 roll angles spectra for the redshift extraction. With these data we reach the requirement of  $\delta z < 10^{-3}$ 

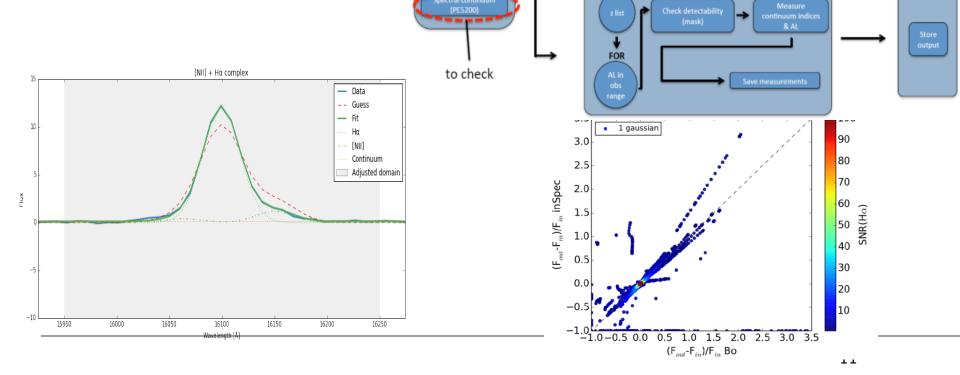



## Test Status and Results: PE5200

Performance Tests to validate methods

A performance matrix is set up to identify limitations of the methods.

For each redshift bin (z=0 to 7.0 with 0.5 steps), simulations are produced on a grid of integrated line fluxes and objects magnitude. PF-SPE is run on the simulated spectra and the success rate in redshift measurement is computed for each bin.






### Algorithms: PE5300

PE5300: line measurement

- With the redshift list from PE5200 compute line fluxes, EW, FWHM
- Perform line fit and measure errors
- Provide measurement of the continuum and absorption indices (checks ongoing)



INPUT

Mask (OUSIR)

Emission lines MEASUREMENT

Measure

parameters (flux

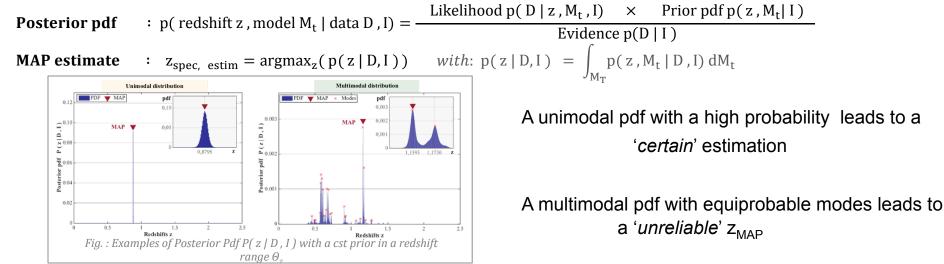
significance, corr

Absorption lines MEASUREMENT

OUTPUT

OUTPUT

FOR


FOR

FOR

### Algorithms: PE5400

#### **Bayesian model**





Different types of the Posterior pdf p (z | D, I )  $\Leftrightarrow$  different level of trust in the estimation

Inference of the quality state of the global maxima  $z_{\mbox{\scriptsize MAP}}$  via:

- Machine learning (classification and/or clustering)
- Characteristics of the Posterior p (z | D, I)

[CLASSIFICATION TEST] Confusion Matrix of Resubstitution tests Ensemble classifier (Tree bagger, 20 learners, OVA) Pred 0.14% 0.14% 99.57% Pred 1 0% 99.86% 0.29% Pred 0 99.86% 0% 0.14% True 0 True 1 True 2

• Preliminary tests [04/2016]

3 Levels the trust in the estimation zMAP

Unreliable flagʻ0' Reliable flagʻ1' Very reliable flagʻ2'

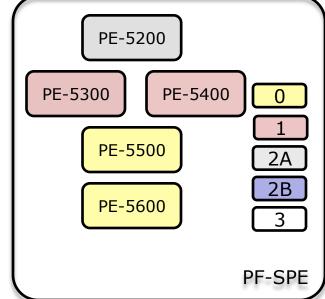
#### Status - Algorithms

Status of the Processing elements (PE)

#### • PE-5200 : redshift measurement

- Line model implemented
- Cross-correlation implemented
- Spectral line detection implemented
- Working within LODEEN

#### • PE-5300 : Line measurements


- Fit of lines implemented
- Extraction of Measurements / errors

#### PE-5400 : redshift quality determination

- Implementation of PDF
- PE-5500 : Rest Frame parameters
  - Algorithms defined

#### • PE-5600 : Spectro photometric classification

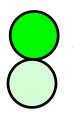
Identified algorithms and methods





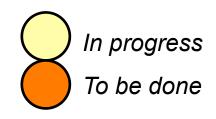
### Roadmap – planning Schedule




| Release | Date         | Delivery                                        | SGS Obectives               | SPE PF Objectives                                                    | Maturity<br>Level |
|---------|--------------|-------------------------------------------------|-----------------------------|----------------------------------------------------------------------|-------------------|
| V0      | Nov 2014     | Technical note<br>integration infrastructure    | SRR – Science requ. Revue   | Check and assessments of scientific requirements                     | 0                 |
| V0.5    | Nov2015      | Prototype – including Data Model integration    |                             | Check integration within the LODEEN environment                      | 1A -1B            |
| V1      | July 2016    | Presentation of the software                    | TK1 – keypoint              | Check advances in the development of the prototype                   | 1A -1B            |
| V1.2    | October 2016 | Prototype v1.2 - interfaces with infrastructure | Scientific challenge        | Check integration within the CODEEN environment                      | 2A                |
| V2.1    | October 2017 | Prototype v2.1 - interfaces with infrastructure | DR                          | Requirements validation, testing in CODEEN environment               | 2A                |
| V2.2    | July 2018    | Prototype v2.2 - interfaces with infrastructure | TK2 – keypoint              | testing in CODEEN environment                                        | 2A-2B             |
| V2.5    | March 2019   | Production PF v2.5                              | SGS scientific challenge #7 | Full integration Fraction TBD of modules already coded and validated | 2A-2 B- 3A        |
| V2.9    | April 2019   | Production PF V2.9                              | IR                          | Full integration Fraction TBD of modules already coded and validated | 2A-2 B- 3A        |
| V3      | May 2020     | Production PF V3                                | RR                          | Full integration of modules already coded and validated              | 3B                |
| V3.1    | Sept. 2020   | Production PF V3.1                              | ORR                         | Full integration of modules already coded and validated              | 3B                |
| V3.5    | July 2021    | Production PF V3.5                              | DPRR                        | Full integration of modules already coded and validated              | 3B                |

### Requirements

#### Main PF-SPE requirements :


Process and deliver 150000 redshifts and associated data each week.

- *R-LRD-018*/R-GDP-DL3-222 : Provide central wavelength, identification, FWHM, equivalent width, flux and luminosity and errors associated
- *R-LRD-031* : Provide interpolated flux at a specified set of rest-frame wavelengths (1500Å, 2500Å, U,B, V, R, I, J, H, K) with associated errors.
- R-GDP-DL3-230 : Selection of sample (completeness level is > 45%) and purity (required survey purity level is > 80%) (The Hα line flux limit is 2x10<sup>-16</sup> erg cm<sup>-2</sup> s<sup>-1</sup> at 1600 nm (at S/N > 3.5)) and meets the required density.



Demonstrated

OK by analysis/ or « perfect » data



### **Requirements**



From Galaxy Clustering :

#### R-GC.1-3 : $\Delta z/z < 1*10^{-3} < (0.4 \text{ pix})$



R-SPE-CAL-F-020 : Line intensity data processing error < 10% of the statistical error.

R-GC.1-4 : Measured redshifts should have a systematic offset <1/5 of the standard deviation given in R-GC.1-3, (exception of catastrophic redshift failures).

R-GC.1-10 : Catastrophic redshift failures < 0.2 (20%).



R-GC.2.1-2 : The completeness of the redshift measurements from NISP spectra shall be larger than 45%.

#### Interface and Data Definition

Cuclid

- Interface with Other PF/OUs
  - Interface with PF-SIR (1D spectra and noise, 1D covariance matrix, Masks)
  - Interface With SIM (SIM 1D by pass products)
  - Interface With PHZ(High quality redshift sample)
  - Interface with SWG (requirements)
  - Interface with calibration (list of lines, templates)
- Open points:

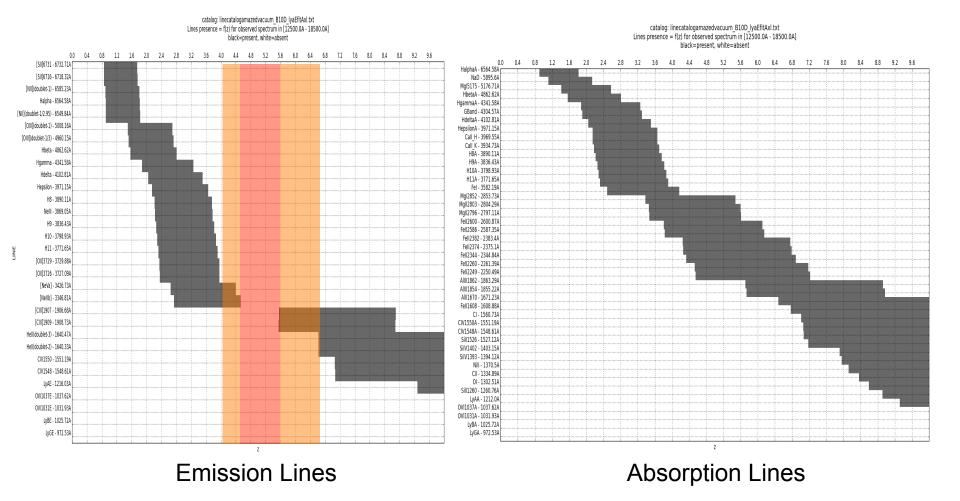
List of products for interfaces TBD.

- Data Model
  - The definition of the 1D spectrum Data Model is still in progress (basic Spectrum DM)



- Validation tests with simulation spectra from SIM (working with by-pass)
  - SIM data are being tested, A test-bed will be provided before autumn

- Validation tests with output spectra from SIR
  - Date not yet defined, depending on SIR


### Extra slides



#### Algorithms

#### Analysis of lines distribution wrt redshift





20