

Model based approach to the calibration of JWST/NIRSPEC - spatial and spectral calibration

G. Giardino, P. Ferruit, B. Dorner, N. Luetzgendorf

ESAC - 2016 EUCLID PHOTOMETRIC CALIBRATION WORKSHOP

Outline

- What is NIRSpec parametric model
- Why a model based approach to calibration?
- How do we adjust the model parameters to match the data from the instrument?
 - What calibration accuracy we have achieved?
- Why this could be relevant for the Euclid mission?

NIRSpec

NIRSpec flight model in November 2012 at the end of its integration at Airbus (Ottobrunn site), before undergoing an extensive test and calibration campaign in 2013

NIRSpec in a nutshell

- Multi-object spectroscopy (1/4 million selectable slitlets)
- Integral Field spectroscopy
- Fixed slit-high contrast spectroscopy
- FOV (MOS) 3.4x3.6 arcmin²
- Wavelength range: 0.6 5.3 μm
 - Spectral resolution: 100, 1000, 3000

NIRSpec in a nutshell

- Multi-object spectroscopy (1/4 million selectable slitlets)
- Integral Field spectroscopy
- Fixed slit-high contrast spectroscopy
- FOV (MOS) 3.4x3.6 arcmin
- Wavelength range: 0.6 5.3 μm
 - Spectral resolution: 100, 1000, 30

Swiss-army knife of Near-IR spectroscopy

NIRSpec parametric model

What is NIRSpec parametric model?

What is NIRSpec parametric model?

NIRSpec design

NIRSpec design – Why model approach?

Repositioning \rightarrow differences in dispersers tilt angle

NIRSpec parametric model

NIRSpec parametric model

Coordinate transform

 $\begin{array}{lll} x_p &=& \gamma_x \cdot \left[(x_{in} - x_{0in}) \cos(\vartheta) + (y_{in} - y_{0in}) \sin(\vartheta) \right] + x_{0out} \ , \\ y_p &=& \gamma_y \cdot \left[- (x_{in} - x_{0in}) \sin(\vartheta) + (y_{in} - y_{0in}) \cos(\vartheta) \right] + y_{0out} \ . \end{array}$

The optical distortion is applied in the form of a 2D polynomial of order n, so the final output coordinates of the transform (x_{out}, y_{out}) are

$$x_{out} = \sum_{i=0}^{n} \sum_{j=0}^{n-i} a_{i,j}(\lambda) x_p^i y_p^j,$$

$$y_{out} = \sum_{i=0}^{n} \sum_{j=0}^{n-i} b_{i,j}(\lambda) x_p^i y_p^j.$$

FORE transform: filters cause chromatism

$$\begin{array}{lll} a_{i,j}(\lambda) &=& \alpha_{xi,j}\lambda + \beta_{xi,j} , \\ b_{i,j}(\lambda) &=& \alpha_{yi,j}\lambda + \beta_{yi,j} . \end{array}$$

Model parameters

Element	Туре	Description	N. parameters
COL	Paraxial transform	Input and output plane centers,	7
		rotation angle and scaling factors	
	Geometrical distortion	Forward and Backward 2D polynomials	42+42
CAM	Paraxial transform	Input plane center, rotation	5
		angle and scaling factors	
	Geometrical distortion	Forward and Backward 2D polynomials	42+42
MSA	Quadrant position	Position of shutter (1,1) and rot. angle	12
	Aperture sizes	Micro shutter pitch (X & Y) (per quad.)	8
	Fixed slits	Positions and rot. angle	15
GWA	Grating orientation	Alignment angles	6×3
	Mirror orientation	Alignment angles	2
FPA	Detector position	y-position pixel(1,1), detector gap in X and r	4
		rot. angle of SCA492	

→ Tot = 225 free parameters

Dorner, Giardino, Ferruit et al., 2016 A&A, 592, A113
Giardino, Luetzgendorf, Ferruit et al., 2016, SPIE Proc, Vol. 9904

How do we calibrate the model?

➔ Approach successfully used for calibration of Instrument Level testing (IABG 2013) & Goddard 2015

Calibration exposures at IABG (2013)

Results: residuals at the FPA

- Number of reference points in imaging: 5945
- Number of spectral reference points (argon line positions): 30766

Absolute residual (pixels): 0.064 +- 0.052, median: 0.050

Number of points: 37066

Results: wavelength calibration accuracy

G140H wavelength calibration → Line residuals < 1/20 of a resolution element

Results: wavelength calibration accuracy

Disperser	SLIT / nm	MOS / nm	IFU / nm
G140H	-0.007±0.015	-0.004±0.020	0.017±0.024
G235H	-0.024±0.028	-0.019±0.036	0.022±0.036
G395H	-0.039±0.040	-0.030±0.060	0.000±0.033
G140M	-0.006±0.025	-0.013±0.033	0.051±0.019
G235M	-0.005±0.047	-0.012±0.054	0.076±0.049
G395M	-0.006±0.080	-0.034±0.085	0.095±0.064

→ Better than 1/20 of a resolution element for all gratings
 → Better than 5-7 km/s for all gratings
 → Better than 1/10 of a resolution element for Priism

→Dorner, Giardino, Ferruit et al., 2016 A&A, 592, A113
→Giardino, Luetzgendorf, Ferruit et al., 2016, SPIE Proc, Vol. 9904

Summary

- The model approach allows us to extract wavelength calibrated spectra from any the of NIRSper 1/4 million slits, having acquired calibration exposures for only 1.5% of all the CIENCY apertures
 - ➔ enormous advantages for NIRSpec operational efficiency
- Model optimization procedure ensure a solid calibration of the parametric model

→ a accurate wavelength calibration: better of a 1/10 of pixel (or 1/20 of a resolution element), for each grating.

 Good handle on calibration procedure and accuracy well before launch

There is more ...

Instrument Performance Simulator

• Fourier optics software

→ compute synthetic PSF in all of NIRSpec optical planes

• Radiometric response computation tool

→ throughput from all surfaces

- → slit and diffraction losses
- An exposure simulator

➔ to generate synthetic detector readouts

Conclusions

- Parametric model of the instrument:
 - assess in detail NIRSpec design
 - asses instrument performance as the hardware components are being manufactured and characterized at sub-system level

CONSTRCTION

TESI

- Forced to think through Performance Verification and Calibration campaign of NIRSpec
 - device the right test/calibration exposures
 - simulate these exposures to validate concepts
 - develop the necessary processing tools to extract all the necessary calibration and performance numbers
- The model has become integral part end-to-end simulations of NIRSpec: sky scene to level 2 products... (JWST 'sky' is much simpler than Euclid's)

Imaging residuals

IFU residuals

Model implementation

Each element of the model is described in a file. There are two basic types of files:

Description files

- MSA
- IFU slicer
- Disperser (two files for each disperser)
- FPA

Coordinate transform files

- FORE transforms (one file for each filter)
- COL transform
- CAM transform
- IFU FORE
- IFU POST (one file per IFU slice)