Image reduction using *The Tractor*; and the Legacy Surveys

Dustin Lang Research Associate, Dunlap Institute & Dept of Astronomy and Astrophysics University of Toronto

Euclid Calibration Workshop / 2016-09-22

Astronomical image reduction

Astronomical image reduction

ExpGalaxy at RaDecPos: RA, Dec = (241.40283, 8.63426) with NanoMaggies: g=23.4, r=21.3, z=20.1 and E PointSource at RaDecPos: RA, Dec = (241.40487, 8.63815) with NanoMaggies: g=23.6, r=24.5, z=21.7 PointSource at RaDecPos: RA, Dec = (241.40324, 8.62651) with NanoMaggies: g=14.4, r=13.9, z=13.8 PointSource at RaDecPos: RA, Dec = (241.40213, 8.62382) with NanoMaggies: g=16.6, r=16.2, z=16 PointSource at RaDecPos: RA, Dec = (241.40507, 8.62800) with NanoMaggies: g=27.8, r=22.2, z=21.1 PointSource at RaDecPos: RA, Dec = (241.40913, 8.62305) with NanoMaggies: g=18.3, r=16.9, z=16 PointSource at RaDecPos: RA, Dec = (241.40734, 8.62209) with NanoMaggies: g=26.5, r=22.2, z=21.9 FixedCompositeGalaxy at RaDecPos: RA, Dec = (241.43068, 8.62910) with NanoMaggies: g=18.9, r=17.8, z PointSource at RaDecPos: RA, Dec = (241.43154, 8.63251) with NanoMaggies: g=21.7, r=21.4, z=22.4 FixedCompositeGalaxy at RaDecPos: RA, Dec = (241,42616, 8,63367) with NanoMaggies: g=20.5, r=18.9, z PointSource at RaDecPos: RA, Dec = (241.40536, 8.64217) with NanoMaggies: g=21.8, r=20.2, z=19.1 PointSource at RaDecPos: RA, Dec = (241.40477, 8.64181) with NanoMaggies: g=22.2, r=20.7, z=19.5 PointSource at RaDecPos: RA, Dec = (241.42465, 8.62741) with NanoMaggies: g=20.7, r=20.3, z=19.9 PointSource at RaDecPos: RA, Dec = (241.42507, 8.62513) with NanoMaggies: g=24.1, r=21.4, z=20.7 PointSource at RaDecPos: RA, Dec = (241.41836, 8.63195) with NanoMaggies: g=22.4, r=20.9, z=19.9 FixedCompositeGalaxy at RaDecPos: RA, Dec = (241.42272, 8.64120) with NanoMaggies: g=20.6, r=19.9, z FixedCompositeGalaxy at RaDecPos: RA, Dec = (241.42276, 8.62457) with NanoMaggies: q=21.5, r=20.1, z PointSource at RaDecPos: RA, Dec = (241.43404, 8.62773) with NanoMaggies: g=21.9, r=20.6, z=18.7 FixedCompositeGalaxy at RaDecPos: RA, Dec = (241.43345, 8.61975) with NanoMaggies: g=21.8, r=20.8, z PointSource at RaDecPos: RA, Dec = (241.40560, 8.63421) with NanoMaggies: g=23.7, r=22.2, z=21.3 PointSource at RaDecPos: RA, Dec = (241,41174, 8,62798) with NanoMaggies: g=23.5, r=22.2, z=21.5 PointSource at RaDecPos: RA, Dec = (241.41362, 8.63167) with NanoMaggies: g=23.7, r=22.5, z=20.8 PointSource at RaDecPos: RA, Dec = (241.41552, 8.63480) with NanoMaggies: g=22.9, r=21.4, z=19.9 PointSource at RaDecPos: RA, Dec = (241.41910, 8.64038) with NanoMaggies: g=23, r=21.9, z=19.7 PointSource at RaDecPos: RA, Dec = (241,41619, 8,62815) with NanoMaggies: g=23,2, r=22,3, z=(flux -0 DevGalaxy at RaDecPos: RA, Dec = (241.41651, 8.62424) with NanoMaggies: g=23.2, r=22, z=20.9 and Ell PointSource at RaDecPos: RA, Dec = (241.42234, 8.62769) with NanoMaggies: g=23, r=21.7, z=20.1 ExpGalaxy at RaDecPos: RA, Dec = (241,42484, 8,63754) with NanoMaggies: g=22.8, r=22.3, z=21.8 and E ExpGalaxy at RaDecPos: RA, Dec = (241.42847, 8.62040) with NanoMaggies: g=21.9, r=21.7, z=20.6 and E PointSource at RaDecPos: RA, Dec = (241.43236, 8.62368) with NanoMaggies: g=23.2, r=22.5, z=21.3 PointSource at RaDecPos: RA, Dec = (241.43837, 8.63847) with NanoMaggies: g=23, r=21.8, z=20.8 FixedCompositeGalaxy at RaDecPos: RA, Dec = (241.40960, 8.63108) with NanoMaggies: g=(flux -0.224), PointSource at RaDecPos: RA, Dec = (241.43644, 8.63866) with NanoMaggies: g=25.5, r=23.7, z=21.3

3

Conclusions

Take-away messages:

- Forward modeling is a clean way of getting *all* the information out of images from diverse instruments (no PSF homogenization; no resampling; no coadds)
- Consider forced photometry for Euclid: VIS detects and measures all the objects; this makes EXT/MER photometry easier!

Second-order:

- the Tractor is a code that can do these things
- We're using the Tractor at scale in the Legacy Surveys (DECaLS, MzLS)
- Can re-fit calibration parameters
- Can use sampling to characterize covariances

Context the Tractor Examples

Example: Galaxy fitting

ExpGalaxy at pixel (18.00, 18.00) with Flux: 500 shape EllipseE: re=1, e1=0, e2=0

Context the Tractor Examples

Example: Galaxy fitting

ExpGalaxy at pixel (18.30, 18.30) with Flux: 432.5 shape EllipseE: re=3.74, e1=0.07, e2=0.98

Context the Tractor Examples

Example: Galaxy fitting

ExpGalaxy at pixel (18.33, 18.32) with Flux: 441.7 shape EllipseE: re=3.85, e1=0.03, e2=0.46

Context the Tractor Examples

Example: Galaxy fitting

ExpGalaxy at pixel (19.27, 19.29) with Flux: 837.4 shape EllipseE: re=8.16, e1=0.002, e2=0.70

Context the Tractor Examples

Example: Galaxy fitting

ExpGalaxy at pixel (20.12, 20.06) with Flux: 1094.5 shape EllipseE: re=8.89, e1=-0.013, e2=0.54

Context the Tractor Examples

Example: Galaxy fitting

ExpGalaxy at pixel (19.91, 19.85) with Flux: 1082.7 shape EllipseE: re=8.92, e1=-0.018, e2=0.54

Example: Forced photometry

SDSS

Model for one source Full Model

Context the Tractor Examples

Example: Forced photometry for Euclid

Model

CFHT g

"VIS" (from ACS F814W)

CFHT r

DECam z

Example: Two galaxy fitting

Image

Model

Example: Two galaxy fitting

Image

Model

Residual

22

Example: Two galaxy fitting

Image

Model

the Legacy Survey family (*legacysurvey.org*)

- ▶ Public imaging surveys, g, r, z, WISE, for DESI targeting $(g \sim 24.7, r \sim 23.9, z \sim 23)$
- All raw data immediately public; reduced ~semi-annually
- Code: github.com/legacysurvey, Viewer legacysurvey.org/viewer
- Equatorial sky: DECam (Blanco 4 m)
- Northern sky: Mosaic (Mayall 4 m) + 90-Prime (Bok 2.3 m)

DECaLS

Applying the Tractor to DECaLS data

Blobs

Applying the Tractor to DECaLS data

DECam Coadd

Applying the Tractor to DECaLS data

Model + Noise

Applying the Tractor to DECaLS data

Model

Applying the Tractor to DECaLS data

Residuals

Applying the Tractor to DECaLS data

Model

Applying the Tractor to DECaLS data

Model

Applying the Tractor to DECaLS data

36

Applying the Tractor to DECaLS data

Applying the Tractor to DECaLS data

38

DECaLS: Data Release 3

- Released September 2016
- Processing all our data AND all public DECam data
- 4200 sq. deg with g, r, z coverage (~ 500 million sources)

DECaLS: Data Release 3

- Released September 2016
- Processing all our data AND all public DECam data
- 4200 sq. deg with g, r, z coverage (~ 500 million sources)

DECaLS: Data Release 3

- Released September 2016
- Processing all our data AND all public DECam data
- 4200 sq. deg with g, r, z coverage (~ 500 million sources)

Conclusions

Take-away messages:

- Forward modeling is a clean way of getting *all* the information out of images from diverse instruments (no PSF homogenization; no resampling; no coadds)
- Consider forced photometry for Euclid: VIS detects and measures all the objects; this makes EXT/MER photometry easier!

Second-order:

- the Tractor is a code that can do these things
- We're using the Tractor at scale in the Legacy Surveys (DECaLS, MzLS)
- Can re-fit calibration parameters
- Can use sampling to characterize covariances

Thanks!

Tricks

- central operation: render pixel models & derivatives
- galaxies: convolution of galaxy profile by PSF (can't do naive convolution)
- ► we use two tricks, both using Mixtures of Gaussians approximations of galaxy profiles (G_s(r) ∝ e^{-kr^{1/s}})

Convolution Trick #2

- pixelized PSF model; take Fourier transform
- Gaussians have analytic Fourier transforms; F(g) = G
- evaluate F(galaxy) directly
- multiply and Inverse FFT to get the convolved profile

Dark Energy Spectroscopic Instrument (DESI)

- ▶ 5000-fiber spectrograph, 3° FOV, on the 4-m Mayall
- On-sky 2018, 5-year survey. 9k to 14k sq deg
 - ▶ 4M Luminous Red Galaxies (LRGs), $z \in [0.4, 1]$
 - ▶ 18M Emission Line Galaxies (ELGs), $z \in [0.6, 1.6]$
 - > 2M tracer QSOs, z < 2.1 plus 0.7M Ly- α QSOs, z > 2.1

Dark Energy Spectroscopic Instrument (DESI)

BAO in many redshift slices to nail down the growth history

WISE Satellite

- Wide-field Infrared Survey Explorer
- ▶ Mid-infrared: W1 (3.4µ), W2 (4.6µ), W3 (12µ), W4 (22µ)
- Primary survey: 2010-2011; reactivated for more in 2014!
- W1/W2 median of 33 exposures all-sky
- Scans from Ecliptic pole-to-pole 5,000 exposures at the poles
- ▶ Pixel scale: 2.75 arcsec/pixel: (7 times bigger than SDSS)

WISE photometry

SDSS

Model for one source Full Model

(Targeted in BOSS W3 ancillary; quasar at z = 2.71)

WISE Tractor photometry: depth

We measure sources below the WISE catalog 5-sigma threshold

WISE Tractor photometry: accuracy

The Tractor measurements are consistent with the WISE catalog

WISE Tractor photometry: depth

The Tractor measurements of faint objects make sense astrophysically

Catalog matches

Tractor photometry

Multi-Band (SED-matched) Detection

- Example: g,r,i measurements
- Assume flat SED ("Vega"); estimate r flux
- g flux is an estimate of r flux; $\hat{r}_g = g$
- *i* flux is an estimate of *r* flux; $\hat{r}_i = i$
- Three predictions of r flux, with Gaussian errors
- ightarrow
 ightarrow inverse-variance weighting
- Assume red spectrum (colors g r = r i = 1):
- *g* flux is an estimate of *r* flux; *r̂_g* = *g* ∗ 2.5 (with variance 2.5² larger)
- *i* flux is an estimate of *r* flux; *r̂_i* = *i*/2.5 (with variance 2.5² smaller)

SED-matched detection

Detections strongest in g-only

SED-matched detection

Detections strongest in r-only

SED-matched detection

Detections strongest in i-only

SED-matched detection

SED-matched detection

Detections strongest in Red

SED-matched detection

SED-matched detection

SED-matched detection

SED-matched detection

SED-matched detection

Detections strongest in Redder

SED-matched detection

SED-matched detection

SED-matched detection

Galaxy detections

