Euclid Science and Euclid data

Y. Mellier on behalf of the Euclid Consortium

www.euclid-ec.org

Euclid Top Level Science Requirements

Sector	Euclid Targets
Dark Energy	• Measure the cosmic expansion history to better than 10% in redshift bins $0.7 < z < 2$.
	• Look for deviations from $w = -1$, indicating a dynamical dark energy.
	• Euclid <i>alone</i> to give $FoM_{DE} \ge 400$ (1-sigma errors on $w_{p} \& w_a$ of 0.02 and 0.1 respectively)
	• Measure the growth index, γ , with a precision better than 0.02
	• Measure the growth rate to better than 0.05 in redshift bins between 0.5< $z < 2$.
Test Gravity	• Separately constrain the two relativistic potentials Ψ, Φ .
	Test the cosmological principle
	 Detect dark matter halos on a mass scale between 10⁸ and >10¹⁵ M_{Sun}
	 Measure the dark matter mass profiles on cluster and galactic scales
Dark Matter	 Measure the sum of neutrino masses, the number of neutrino species and the neutrin hierarchy with an accuracy of a few hundredths of an eV
Initial Conditions	• Measure the matter power spectrum on a large range of scales in order to extract values for the parameters σ_8 and <i>n</i> to a 1-sigma accuracy of 0.01.
	• For extended models, improve constraints on <i>n</i> and α wrt to Planck alone by a factor 2.
	• Measure a non-Gaussianity parameter : f_{NL} for local-type models with an error < +/-2.

- DE equation of state: $P/\rho = w$, and $w(a) = w_p + w_a(a_p-a)$
- Growth rate of structure formation: $f \sim \Omega^{\gamma}$;
- FoM=1/($\Delta w_a x \Delta w_p$) > 400 \rightarrow ~1% precision on w's.

Euclid cosmological probes

Observational Input	Probe	Description
Weak Lensing Survey	Weak Lensing (WL)	Measures the expansion history and the growth
		factor of structure
Galaxy Redshift Survey:	Baryonic Acoustic Oscillations	Measure the expansion history through D(z) and
Analysis of P(k)	(BAO)	H(z) using the "wiggles-only".
	Redshift-Space distortions	Determine the growth rate of cosmic structures
		from the redshift distortions due to peculiar
		motions
	Galaxy Clustering	Measures the expansion history and the growth
		factor using all available information in the
		amplitude and shape of P(k)
Weak Lensing plus Galaxy	Number density of clusters	Measures a combination of growth factor (from
redshift survey combined with		number of clusters) and expansion history (from
cluster mass surveys		volume evolution).
Weak lensing survey plus galaxy	Integrated Sachs Wolfe (ISW)	Measures the expansion history and the growth
redshift survey combined with	effect	
CMB surveys		
Weak lensing survey plus galaxy	Weak lensing on CMB	Measures the high redshift expansion regime
redshift survey combined with	anisotropies	and growth of structures
CMB surveys		

Euclid: Level1 WL and GC Requirements

Req. ID	Parameter	Requirement	Goal
WL.1-1	Survey Area (A)	>15,000 deg ²	$>20,000 \text{ deg}^2$
WL.1-2	Density of galaxies (Ng)	≥30 gals/amin ²	>40 gals/amin ²
WL.1-3	Median redshift (zm)	>0.8	
WL.1-4	Systematics (σ^2_{sys})	10-7	
WL.1-5	Redshifts error $(\sigma(z)/(1+z))$	<u><</u> 0.05	<u><</u> 0.03
WL.1-6	Catastrophic failures (fcat)	10%	5%
WL.1-7	Bin mean redshift (δz)	< 0.002	
GC.1-1	Survey Area (A)	>15,000 deg²	>20,000 deg ^z
GC.1-2	Galaxy sky density (sd)	1,700 / deg ²	2,500 / deg ²
GC.1-3	Redshift accuracy	σ(z)≤0.001(1+z)	
GC.1-4	Systematic offset in redshift	<1/5 redshift accuracy	
GC.1-5	Redshift range	0.9 <z<1.8< td=""><td>also 0.7<z<0.9 and<="" td=""></z<0.9></td></z<1.8<>	also 0.7 <z<0.9 and<="" td=""></z<0.9>
			1.8 <z<2.05 or="" parts<="" td=""></z<2.05>
			thereof
GC.1-6	Median of redshift distribution	Suppressed	Suppressed
GC.1-7	Upper quartile of redshifts	>1.35	
GC.1-8	Bias of all galaxies	>1	
GC.1-9	Bias of galaxies, upper quartile in redshift	>1.3	
GC.1-10	fraction of catastrophic failures	f<20%	
GC.1-11	fraction of catastrophic failures	known to 1%	
GC.1-12	mean redshift in 0.1 redshift bin	known to 0.1%	
GC.1-13	spurious fluctuations, uniformity in counts	<1% over patches of 0.5	
		deg2	

WL probe: Cosmic shear over 0<z<2 :

1.5 billion galaxies shapes, shear and phot-z (u,g, r,i,z,Y,J,H) with 0.05 (1+z) accuracy over 15,000 deg²

GC; BAO, RSD probes: 3-D positions of galaxies over 0.7<z<1.8 :

35 million spectroscopic redshifts with 0.001 (1+z) accuracy over 15,000 deg²

Euclid and the DM-dominated / DEdominated transition period

Euclid Survey Machine:15,000 deg² + 40 deg² deep

Euclid Level2 WL and GC Requirements

Req. ID	Description	Requirement	Goal	Parent Req.
WL.2.1-1	Wavelength Coverage: Δλ _{νίκ}	550nm-900nm		R-WL.1-2, R-WL.1-3
WL.2.1-2	Number of visible Filters: NF	Suppressed	Suppressed	R-WL.2.1-24
WL.2.1-3	Vis PSF Size: FWHM	< 0.18 arcseconds		R-WL.1-2, R-WL.1-4
WL.2.1-4	Vis pixel scale: qpix	0.1 ± 0.01 arcseconds		R-WL.1-4
WL.2.1-5	PSF ellipticity: ePSF	< 0.15		R-WL.1-4
WL.2.1-6	PSF profile:	(R _{PSF} /R _{REF}) ² <4 where R _{REF} =0.2 arcseconds for Gaussian profile	(R _{PSF} /R _{REF}) ² <3	R-WL.1-4
WL.2.1-7	PSF degrees of freedom:	Suppressed		
WL.2.1-8	PSF ellipticity Stability: $\sigma(\mathbf{e}_{res})$	<2x10 ⁻⁴		R-WL.1-4
WL.2.1-9	PSF size Stability: $\sigma(\mathbb{R}^2)/\langle \mathbb{R}^2 \rangle$	<10 ⁻³		R-WL.1-4
WL.2.1-10	PSF wavelength dependence (α)	<0.9		R-WL.1-4
WL.2.1-11	Instrument linearity	Suppressed		R-WL.1-4
WL.2.1-12	Stray light	<20% of eclip zod		R-WL.1-2, R-WL.1-4
WL.2.1-13	Lost pixels:	Suppressed	suppressed	WS.2.2-2
WL.2.1-14	Clustering of lost pixels	Suppressed		
WL.2.1-15	Precalibration distortion	Suppressed	suppressed	R-WL.2.1-24
WL.2.1-16	Postcalibration distortion	<0.003%	<0.001%	R-WL.1-4
WL.2.1-17	NIR wavelength range	920 to ≥1600nm		R-WL.1-5, R-WL.1-6
WL.2.1-18	NIR number of filters:	≥3		R-WL.1-5, R-WL.1-6
WL.2.1-19	NIR PSF size:	rEE50 < 0.4 arcseconds rEE80 < 0.7 arcseconds at 1486nm		R-WL.1-5, R-WL.1-6
WL.2.1-20	NIR Pixel scale:	0.3 <u>+</u> 0.03 arcseconds		R-WL.1-5, R-WL.1-6
WL.2.1-21	Relative Photometric Accuracy	<1.5%		R-WL.1-5, R-WL.1-6
WL.2.1-22	CTI/CTE ellipticity correction	Suppressed		R-WL.1-4
WL.2.1-23	Contrast ratio of ghost images	Suppressed		WS.2.2-2

Req. ID	Description	Requirement	Goal	Parent Req.
WL.2.1-24	Accuracy of shape measurement	σ[μ] <u><</u> 2x10 ⁻³ σ[c] <u><</u> 5x10 ⁻⁴	σ[μ] <u><</u> 2×10 ⁻³ σ[c] <u><</u> 5×10 ⁻⁴ and μ <u><</u> 10 ⁻³	R-WL.1-4
WL.2.1-25	Non-convolitive contribution to ellipticity uncertainty	σ(e _{NC}) _{per_exposure} <u><</u> 1.1×10 ⁻⁴		R-WL.1-4
WL.2.1-26	VIS relative photometry	relative photometric error < 1%		
WL.2.1-27	VIS absolute photometry		absolute photometric error < 5%	R-WS.2.2-2
WL.2.1-28	NISP-P absolute photometry		absolute photometric error < 5%	R-WS.2.2-3
GC.2.1-1	Flux limit	≤ 2×10 ⁻¹⁶ erg cm ^{-z} s ⁻¹ In 0.5 arcsec diameter		R-GC.1-2, R-GC.1-6, R-GC.1-7, R-GC.1-8, R-GC.1-9
GC.2.1-2	Completeness	>45%	>65%	R-GC.1-2
GC.2.1-3	Flux limit at all wavelengths	<120% of GC.2.1-1		R-GC.1-6, R-GC.1-7
GC.2.1-4	Spectral range: lower limit Spectral range: upper limit	less than 1.25 micron greater than 1.85 micron	> 1.11 micron < 2.00 micron Or parts thereof	R-GC.1-5
GC.2.1-5	Spectral resolution	>380 in 0.5 arcsec diameter		R-GC.1-3, R-GC.1-4
GC.2.1-6	Resolution element	Suppressed		R-GC.1-3, R-GC.1-4
GC.2.1-7	Wavelength error	f < 0.25		R-GC.1-3, R-GC.1-4
GC.2.1-8	PSF size and shape in spectroscopic mode	Suppressed.		R-GC.1-2, R-GC.1-3. R-GC.1-10
GC.2.1-9	Stray light	Suppressed		R-GC.2.1-1, R- CG.2.1-3
GC.2.1-10	Subsample of galaxies	>140,000 gals, with >99% purity		R-GC.1-10, R-GC.1- 11, R-GC.1-12
GC.2.1-11	Spectroscopic redshift purity	>80%		R-GC.1-10
GC.2.1-12	Spurious fluctuations, flux limit uniformity	<0.7% rms in flux limit over 0.5 deg2 area		R-GC.1-13
GC.2.1-13	NISP-S absolute spectrophotometry		absolute spectro- photometric error < 5%	R-GC.2.1-1

Euclid Calibration Workshop ESAC, 20 SEP 2016

The ESA Euclid space mission

Courtesy: S. Pottinger, M. Cropper and the VIS team

Payload and Mechanism Control Unit (PMCU)

VIS

Table 1: VIS and weak lensing channel characteristics

Spectral Band	550 – 900 nm
System Point Spread Function size	\leq 0.18 arcsec full width half maximum at 800 nm
System PSF ellipticity	≤15% using a quadrupole definition
Field of View	>0.5 deg ²
CCD pixel sampling	0.1 arcsec
Detector cosmetics including cosmic rays	≤3% of bad pixels per exposure
Linearity post calibration	≤0.01%
Distortion post calibration	≤0.005% on a scale of 4 arcmin
Sensitivity	$m_{\text{AB}}{\geq}24.5$ at $10\sigma\text{in}3$ exposures for galaxy size 0.3 arcsec
Straylight	≤20% of the Zodiacal light background at Ecliptic Poles
Survey area	15000 deg ² over a nominal mission with 85% efficiency
Mission duration	6 years including commissioning
Shear systematic bias allocation	additive $\sigma_{sys} \le 2 \ge 10^{-4}$; multiplicative $\le 2 \ge 10^{-3}$

Cioppei et al 2010.3FIL

NISP

Courtesy: T. Maciaszek and the NISP team

- FoV: 0.55 deg²
- Mass : 159 kg
- Telemetry: < 290 Gbt/day
- Size: 1m x 0.5 m x 0.5 m
- 16 2kx2K H2GR detectors
- 0.3 arcsec pixel on sky
- Limiting mag, wide survey AB : 24 (5 σ)

• 3 Filters:

- Y (950-1192nm)
- J (1192, 1544nm)
- H (1544, 2000nm)
- 4 grisms:
- •1B (920 1300) , 1 orientation 0°
- •3R (1250 1850), 3 orientations 0°, 90°, 180°

Maciaszek et al 2016:SPIE

Technical Performance Measure		Requirement	CBE
Image Quality			
	FWHM (@ 800nm)	180 mas	163 mas
	ellipticity	15.0%	5.9%
	R2 (@ 800 nm)	0.0576	0.0530
	ellipticity stability σ(ει)	2.00E-04	2.00E-04
VIS Channel	R2 stability σ(R2)/ <r2></r2>	1.00E-03	1.00E-03
	Plate scale	0.10 "	0.10 "
	Out-of-band avg red side	1.00E-03	1.13E-05
	Out-of-band avg blue side	1.00E-03	2.12E-04
	Slope red side	35 nm	15 nm
	Slope blue side	25 nm	8 nm
	rEE50 (@1486nm)	400 mas	217 mas
NISP Channel	rEE80 (@1486nm)	700 mas	583 mas
	Plate scale	0.30 "	0.30 "
Sensitivity		_	
VIS SNR (for mAB =	= 24.5 sources)	10	17.1
NISP-S SNR (@ 1.6um for 2xe-16 erg cm-2 s-1 source)		3.5	4.87
	Y-band	5	5.78
mAB = 24 sources	J-band	5	6.69
1170 – 24 Sources)	H-band	5	5.35
NISP-S Performanc	ce de la companya de		
Purity		80%	72%
Completeness		45%	0.52
Survey			
Wide Survey Coverage		15,000 deg2	15,000
Survey length [years] 5.5 5.4			
Eucid			Eur

ESA Mission PDR October 2015 successful:

Euclid performances meet the scientific and survey requirements

- Image quality of the system fully in line with needs.
- Ellipticity, R² stability and Non-convolutive errors performance dictated mainly by ground processing
- *Purity* not compliant with current data processing methods but expected to be recovered with Euclid specific algorithms (not yet installed at this stage).

Euclid Survey Machine: 15,000 deg² + 40 deg² deep

Euclid Survey Machine: 15,000 deg² + 40 deg² deep

Euclid and the next generation wide field VIS/NIR surveys

Objects	Euclid	Before Euclid	From J. Brinchmann 2013 Euclid in 5 yrs		
Galaxies at 1 < z < 3 with precise mass measurement	~2x10 ⁸	~5x10 ⁶	15, 000 deg2		
Massive galaxies (1< z< 3)	Few hundreds	Few tens			
H α Emitters with metal abundance measurements at $z\sim2-3$	~ 4 10 ⁷ ?	~104?			
Galaxies in clusters of galaxies at $z > 1$	~1.8x10 ⁴	~10 ³ ?	HST in 15 yrs - <20 deg2		
Active Galactic Nuclei galaxies (0.7 < z< 2)	~104	<10 ³			
Dwarf galaxies	~105		2000 2010 2020		
T _{eff} ~400K Y dwarfs	~few 10 ²	<10	Targets for JWST, E-ELT, TMT,		
Lensing galaxies with arcs and rings ~150,000		~10-1000	 Subaru, VLT, MSE, etc Synergy with LSST, eROSIT/ Subaru/USC, WEIDST, Diana 		
Quasars at z > 8	~30	None	SKA		

Ruchid

Need Wide+Deep Surveys: photom+spectro

Euclid Wide:

- 15000 deg² outside the galactic and ecliptic planes
- 12 billion sources (3-σ)
- 1.5 billion galaxies with
 - Very accurate morphometric information (WL)
 - Visible photometry: (u), g, r, i, z , (R +I+Z) AB=24.5, 10.0 σ +
 - NIR photometry : Y, J, H AB = 24.0, 5.0σ
 - Photometric redshifts with 0.05(1+z)
 accuracy
- 35 million spectroscopic redshifts of emission line galaxies with
 - 0.001 accuracy
 - Halpha galaxies within 0.7 < z < 1.85
 - Flux line: 2 . 10⁻¹⁶ erg.cm⁻².s⁻¹; 3.5σ

• Euclid Deep:

- 1x10 deg² at North Ecliptic pole + 1x20 deg² at South Ecliptic pole
 - + 1x10 deg² South close to Equatorial area
- 10 million sources $(3-\sigma)$
- 1.5 million galaxies with
 - Very accurate morphometric information (WL)
 - Visible photometry: (u), g, r, i, z , (R +I+Z) AB=26.5, 10.0 σ +
 - NIR photometry : Y, J, H AB = 26.0, 5.0σ
 - Photometric redshifts with 0.05(1+z) accuracy
- 150 000 spectroscopic redshifts of emission line galaxies with
 - 0.001 accuracy
 - Halpha galaxies within 0.7 < z < 1.85
 - Flux line: 5 . 10^{-17} erg.cm⁻².s⁻¹ ; 3.5 σ

Euclid Wide and Deep Surveys

Legacy value of Euclid calibration fields

- Calibration sequence over 6 years (ecliptic coordinates, Mollweide projection)
- → All calibration fields are shown, including HST targets and the EDFS and EDFN near the ecliptic poles. The ecliptic is shown as a vertical line, jagged lines show background level contour E(B-V)=0.08

Euclid Deep Fields: need to define EDF-S1

- Euclid EDF-N as defined below is definitely recommended to EST, centered of the geometrical position of NEP:
 - EDF-N: RA 17^h 55^{mn} 00^s , DEC 66° 33' 38.35" (J2000.0)
 - 10 deg², circular (see next figure: large circle: 20 deg² for CPC (angles), 10 visits; inner circle: 10 deg² 30 more visits for noise bias)
- **Euclid EDF-S2** as defined below is definitely recommended to EST:
 - Chandra Deep Field South
 - EDF-S2: RA 03^h 32^{mn} 28.0^s , DEC -27° 48' 30" (J2000.0)
 - 10 deg², circular
 - The selection of this field will cost 1 month of extra observing time with respect to the current baseline.
- Euclid EDF-S1: contamination by high stellar density and stellar density gradient in Magellanic Cloud → TBC asap for PI programmes

EDF-S1: MOCD-A new : SAA to 110 deg?

RA 05^h 13^{mn} 34.5^s DEC -60° 25' 50" (J2000.0)

Magenta: quasirectangle area option

Photo-z wide :what we need

- Euclid Y,J,H, AB 24
- 4 optical bands g, r, i, z (ground based) to I_{AB} 24
- Sky coverage 15,000 deg²
- Characterise WL galaxies (are they identical to GC galaxies? Is the Euclid-Wide z-survey for GC enough for WL?)
- Spectroscopic survey of WL galaxies (not only GC galaxies) to calibrate photo-z to I_{AB} 24.5

Photo-z and Legacy Deep : what we need

- Euclid Y,J,H, AB 26
- 4 optical bands g, r, i, z (ground based) to I_{AB} =26
- Sky coverage 40 deg²
- Characterise WL galaxies (are they identical to GC galaxies? Is the Euclid-Deep z-survey for GC enough for WL?)
- Spectroscopic survey of WL galaxies (not only GC galaxies) to calibrate photo-z to $I_{\rm AB}$ 26.5

Euclid : what we expect to have

- 45 nights at Keck telescope for spectroscopy on Euclid fields
- 20hr pilot program at GTC for preparation of a spectroscopic large programme
- 5300 hrs on Spitzer: period 13, 2 Euclid Deep field (20 deg²)
- 271 nights at CFHT u, r data on Euclid Wide North
- 110 nights at JST/T250 g data on Euclid Wide North
- A proposal at Subaru/HSC for g,i,z bands over 2000 deg2 (40 nights) on the northernmost sky
- A VLT proposal for deep spectroscopic survey
- MUCH more to come: EC PI proposals on deep fields

Summary ground based observations for Euclid

Wide survey

Wide North Imaging LSST+CFHT +Subaru+T250?	Wide North Spectroscopy	Wide South Imaging DES+LSST	Wide South Spectroscopy
үјн		YJH	
ugriz dec<30°	Keck 15+15	ugriz dec<0°	ESO+GTC?
ugriz dec>30°			

Deep survey

Deep North Imaging LSST+Subaru	Deep North Spectroscopy	Deep South Imaging LSST	Deep South Spectroscopy
YJH ugriz	Subaru+ GTC?	YJH ugriz	ESO+ GTC?

Spitzer and Euclid Legacy

Figure 1 The 5 (thick red) and 3 (thin red) sigma depth of the proposed data is shown in red along with 5 sigma Euclid depths and a typical 150Myr old $\sim M_* (10^{10.4} M_{\odot})$ galaxy template at z=8 from Bruzual & Charlot (2003) and a ~10Myr old (~10^{9.5} M_{\odot}) galaxy with strong emission lines. Younger galaxies are brighter for a given stellar mass. The survey depth was chosen to be sensitive to M* galaxies to z~8, complement the depth probed by future Euclid and WFIRST, and to find brighter galaxies at even higher redshift.

Figure 2 Depth vs area for representative Spitzer surveys. The pink shaded area shows the region of survey space that probes a representaive volume during re-ionization and the dashed line indicates M* $(10^{10.4} M_{\odot})$ at z~8. JWST will likely supersede surveys shown in the blue area of this plot. See section §1.10 for a discussion of alternative surveys.

Spitzer and Euclid Legacy

Figure 6 Expected 3 sigma constraints on the mass function with Euclid at $z\sim6,8,10$ from existing and proposed data are shown. These models are based on measurements from (Grazian et al. 2015) extrapolated to $z\sim8,10$ using the evolution of the halo mass function (Genel et al. 2015, Finkelstein et al. 2015, Steinhardt et al. 2015). This proposal is aimed at masses >10^{10.5} M_{\odot} where existing data is insufficent to differentiate models. The 3 sigma results are needed to effectively differentiate between galaxy formation models using a combination of clustering and abundance matching combined with stellar synthesis models (e.g. Lee et al. 2012, Steinhardt et al. 2015).

Euclid Legacy and the blue grism? absorption lines on Euclid spectra

age=0.5 Gyr z=1.5

Euclid Cosmological Simulation: for the whole EC

- 2 Trillion particles N body simulation down to z=0
- 400 Healpix maps (nside = 8192) of the projected matter density and potential density
- 100 redshift slices
- 10 different HOD and halo catalogues up to z=2.3
- Consistent mocks for WL and GC data
- SED fitting with 23 bands from u to IRAC at fixed redshift with
- 213 Bruzual&Charlot models with different ages and star formation history
- Includes dust absorption
- Normalisation: reproduce H-band photometry
- Galaxy sizes and morphologies
- Official release Jan 15, 2017
- Key innovation: analysis is done entirely on the fly (light cone and halo catalogue) Euclid Calibration Workshop ESAC, 20 SEP 2016

Ground Segment

Complex organisation:

- 10 Organisation Units
- 9 Science Data Centers

Data: huge volumes, heterogeneous data sets

• VIS+NIR imagery, morphometry, photometry , spectroscopy, astrometry, transients

- data ground + space
- ~100 Pbytes
- 1⁺ million images
- > 10¹⁰ sources (>3-σ)

Overview mission timeline

Science with Euclid will start in 2022 with Q1 and in 2023 with DR1

Euclid Survey: the challenges (1/2)

- Get all the data ! Deep, wide, imaging, spectroscopy
- Inter-Calibrations of all ground based data obtained with more than 10 diffrent telescopes/cameras
- Inter-Calibrations between Euclid and DESI spectra?
- → Set Euclid/non-Euclid data inter-calibration group?

• Set a new group: Organising observations coming from all telescopes in line with the content of DR1, DR2, DR3

 Organise the data processing OU-EXT's: DES, LSST, JST/T250, CFHT, Subaru, HSC, KiDS + spectroscopy ?

Euclid Survey: the challenges (2/2)

- Get Deep g,r,i,z photometry to I=26 over 40deg²: ??
- Get Deep spectroscopy to I=26 : Keck, VLT, GTC, Others?

- Organise/coordinate the EC PI (legacy) programmes: done with all ground based telescopes and satellites
- Get the relevant cosmological and OU-SIM simulations
- Organise the position transient science and follow up

Important Euclid actions to come

- Finalise the negotiations with LSST
- Organise the Deep visible surveys to I=26
- Simulation meeting in Barcelona on Nov 10-11
- Release Euclid simulations on jan 15
- Science with the blue Grism on Dec 1st at IAP
- (Re-)organisation OU-EXTs
- Organisation /coordination of all non-Euclid satellite data (Euclid and PIs)
- Calibration and inter-calibration of this huge heteroneous data set: this meeting
- Optimisation of the survey (spring 2017?)
 Euclid Calibration Workshop ESAC, 20 SEP 2016

Thank you

www.euclid-ec.org

