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Photo-z Requirements
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= Buclid 1s a cosmology mission. Phete-z Redshift requirements
are defined 1n the Red Book for weak-lensing tomography

= 6,<005 (I+z) (goal: 003) over 02 <z <20
= Catastrophic failures < 10% (goal: 5%)

= Mean redshift in each of the 10 tomographic bins known to
a level o(<z>) <0002 (1+z) — Peter's talk

= But we are requested to provide PDFs



Photo-z Requirements with PDF
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Photo-z Requirements with PDF

R-PHZ-PRD-P-010 PHZ performance

The shape of the stacked PDF for each sub-set of galaxies in the
range 0.2<z<2.0 (TBD) used in the weak lensing analysis shall be
such that: the integrated PDF beyond 3 sigma of the mode is <10% of
the total integrated PDF over each sub-set, and the r.m.s of the pdf
calculated within 3 sigma of the mode is sigma(z)< 0.05(1+z).
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Photometric-Redshift Algorithms

Color(+...) space Redshift space

z=f(colors)
Mapping f can be constructed based on prior knowledge :
= Template-fitting: Hyper-Z, Le Phare, BpZ, Phosphoros,...
Or it can be discovered:

= Machine-learning: Nearest neighbors, Perceptron, Support vector
regression, Random Forest, Adaboost, Gaussian Processes, ...

Plus some “non-standard” approaches



Template-Fitting Algorithms @é L

Redshifting of a Spectrum
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Template-Fitting Algorithms 6
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Machine-Learning

Input layer —> Hidden layer —> Output layer
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Artificial neural networks:

MLPQNA, ANN-z, Skynet, ...

tree,

Decision trees:
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Random Forest, TPZ, Adaboost, ...

k-Nearest Neighbors *

ML algorithms rely on a training set (spec-z)
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REDSHIFT

= “Cluster-z”: Use the spatial
distribution of galaxies to infer their
redshift distribution

= Plan agreed with SWG-WL is to

use Cluster-z for validation

= SDC-CH started to look into a
public code: The-wiZZ (C.
Morrison)

= = Vivien



Template-Fitting or Machine-Learning @é ]d

= Overall, 1t 1s difficult to clearly select one over the other, so I have provided
this decision tree:

= What kind of scientist are you?
= An astrophysicist:  Use TF

= A cosmologist: Use ML

= Both/don't know:  You have to listen to my talk



Template-Fitting Advantages *
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v Based on astrophysical knowledge; the better the
knowledge, the better the algorithms

v Any physical process that 1s understood can be modeled
explicitly (e.g., see Audrey's talk)

v Constructs naturally a likelihood, and can be turned into a
fully Bayesian approach

v Can cope with infomative priors in a very natural way, e.g.
luminosity function, cosmological volume



Template-Fitting Disadvantages
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x Knowledge of the sky 1s imperfect and incomplete

x No easy guideline regarding the number of templates, so there
15 a trade-off between catastrophic outliers (fewer templates) and
degeneracies (more templates)

x Computation intensive, especially if one includes the whole
variety of bells and whistles

x Cannot easily cope with additional features (galaxy shape,
etc. ; but 1s 1t useful ?)

x Link between photometry and galaxy properties not clear
(e.g., aperture effects)



Machine-Learning Advantages
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v A competitive ML algorithm can be written from scratch in 2 hours,
and many algorithms can be tested in 10 more minutes

v No need to understand the astrophysics or to model anything

v Can easily incorporate additional features; can use simultaneously
several types of photometry; good ML algorithms can do it without
loss of stability

v A sound ML algorithm will be optimal where training set 1s “good”
v Not very demanding computationally, except some training phases

v Not linked to galaxy properties, so photometry does not really matter



Machine-Learning Disadvantages
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x The ML algorithm 1s only as good as the training set

x A good training set 1s difficult to build

x ML algorithms have “hidden priors” in the selection of the training set
x Many/all algorithms cannot produce naturally a PDFE

x No easy guideline regarding the model complexity ; it can be tested,
but only globally, so 1t 1s prone to overfitting and underfitting, at least
locally

x Extrapolations might occur



But 1s ML better ?
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It 1s often perceived that ML algorithms
are superior. Maybe...

But :

= There 1s a “sprinter” effect

= One needs to consider the fact that
the training set and the test set come
from the same population (at least use
the weighting of Lima et al. 2008)

= All developers of algorithms who are
co-authors of the DES paper develop
ML algorithms...



Data Challenge 2 J

= DES and Ultra-VISTA data on the COSMOS field
= Processed through OU-EXT+OU-MER

= Simulates depth of the Euclid survey

= Significant set of spec-z. 29'964 validation spec-z's

2.8 1
2.6 1

2.4 |

DEC

2.2 |

2.0 |

1.8 |

150.8 150.6 150.4 150.2 150.0 149.8 149.6 149.4
RA



Data Challenge 2 Results J
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= Results weighted by the density of spec-z's in colors and magnitude (Lima

et al. 2008)

= No method can meet the requirements: ¢ /(1+2)<005, OF<10%

= Note the "used fraction"!

Method Type
MLPQNA ML-NN
AdaBoost ML-DT
Le Phare TF
ANNz ML-NN
SOM+RF ML-DT

Color prior+Le Phare  ML-kNN, TF

o /(1+z)

0.057
0.068
0.070
0.077
0.064
0.057

OQutlier
fraction

11.99
21.97
17.49
21.77
18.92
15.60

Used fraction

0.60
1.00
0.85
0.94
0.78
0.94

cL'&



Data Challenge 2 Results

.

SNR >10,7<24.5,0.2<2<2.0 SNR.>10,4<24.5,0.2<2<2.0
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DC2 and Photometric Depth

20.00 —— 0.08 .
R_equireTnent —— Requirement
18.00 1 ® Simulation | & Simulation
0.07F
16.00 |
14.00 0.06 |
W'

= e o

12.00 E

o}
0.05 ®
10.00
&
8.00} 0.04
6.00
L I L I L L L 0.03 | ! ! ! ! ! !
1.60 1.40 1.20 1.00 0.80 0.60 0.40 0.20 1.60 1.40 1.20 1.00 0.80 0.60 0.40 0.20
Fluxerrorpcs % Flux errorpee X
= DES 1s shallower than expected
— P. Capak

= Requirements would be met with Red Book depths



How to improve Template-Fitting ?

Eoctd
= Improve knowledge of the astrophysics, through deep fields, to generate better

templates and better priors

= Understand better the properties of emission lines, galactic absorption,
intergalactic absorption, intrinsic reddening, and treat them correctly
— Audrey's talk

= Bayesian approach removes the issue regarding the number of templates (but
put more constraints on the knowledge of the priors)

= Tricks:
= Zero-point corrections; more complex model?
= Template adaptation
= Correct treatment of upper limits

= Marginalization of the scale factor



Phosphoros @
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= Phosphoros is the template-fitting code developed for
Euclid by the Swiss SDC

= Computationally extremely efficient (C++)

= Implements most of the features found in other TF
codes

= Zero-point correction

» (Luminosity) priors

= IGM (several choices)

= Upper limits
= More features are being implemented
= Fully Bayesian: marginalization

= Phosphoros will be used for physical parameters

= Phosphoros 05 released to OU-PHZ members, will be
public after validation



How to improve Machine-Learning ? @é B
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= Additional features (object size, different kinds of photometry)? Maybe, but
little success (so far)

= Machine-learning requires a model complexity:
= Too small - underfitting
= Too large - overfitting

= Training set must be fully representative ~ — extrapolation

d = 1 (under-fit) d=2 d = 6 (over-fit)

price

house size house size house size



Tuning Model Complexity @}
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validation curve
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How to avoid extrapolation ?
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Median spec-z, confidence > 95% redshifts

Q 1 2 3 4 5 6 0 1

Median 30-band Photo-z

0 20 40 60

We need to cover the color-space of galaxies with spec-z, similarly to
the bias calibration (Masters et al. 2015; — Peter's talk)

How many spectra are needed ? Presumably depends on the algorithm



What ELSE can be Improved ? @é |

= Different algorithms have their own strengths and
weaknesses

= Select or combine the different estimates improves the
photo-z's (Hildebrandt et al. 2010; Dahlen et al. 2013)

» Some objects are not well behaved
= Identify them, and remove them from the WL sample

= Use different mapping for difterent classes of objects



Photo-Z Combination

Template fits, auto; est.: mean
scatter=0.06; outliers=0.038

eucl

OB fits, auto; est.: mode Combination; est.: median

scatter=0.055; outliers=0.072

scatter=0.027; outliers=0.041
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Classifier-based combination (Random Forest)

Stiveges et al. in prep.
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Feature Importance N |
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Problematic Sources -
)

= Sources that have different nature need a different mapping

= Stars, AGN, QSOs, ???

ch

= Including them would require to increase the model
complexity, but they are rare, so difficult to train

« But AGN and QSO's are important for Legacy Science
= Alternatively, we can try to identity them using all possible

parameters (features): eROSITA, WISE, Galex,
morphology

= Use a supervised classitier (human or machine-learning)

= Define the mapping for each class



Photo-z with Human Decision Tree
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» Algorithm for optimal photo-z reconstruction for X-ray sources
(Salvato et al. 2009)

= Uses non-photometric data
X-ray detected sources

= Note: 1t's a decision tree!

Point-like

Extended
and
not varyin

Flo.5.2kev) >8€7° erg/cm?/sec ?

Library from

S no
ibrary rom salvato+09
libert+09 (-20<M<-30)
1@»

Library from
Salvato+09




Photo-z with Random Forest

Source Detection
Optical/IR colors | SED model x*
X-rays FWHM
| | Half light radius =
morphology
Star Outlier

Y v v v Y

Passive | | Starforming | | Starburst AGN QUASAR

led
wavelength(A)

Fotopoulou et al. in prep



Photo-z with Random Forest - =
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How do we determine fluxes ? @é}
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Energy Fluxes and Photon Fluxes @é |
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A A A

A B

Let's assume sources A and B are monochromatic sources which have the same

Energy Flux, and define ¢ =1 /hv
hv, @ (A) =F (A)= F,(B) = hv,® (B),
with @ the Photon Flux in photons s cm™ Hz'

So, we have : @ (A) < @ (B)



Calibration 1n Photon Flux ? @é ] }
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For a CCD counting device, the counts are proportional to the Photon Flux,
and not to the Energy Flux

If one calibrates the Photon Flux instead of the Energy Flux, which is probably trivial,
we can get r1d of this bias.
Both TF and ML algorithms can benefit from this improvement

Color-dependent calibration (i.e. using a color term) can alleviate the problem, but not entirely
(and 1s 1t done?)



Beyond fluxes *
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In X-ray astronomy, each observation comes with its own response. The
source spectral properties are then obtained by forward fitting an emission
model through the response to the count rates

In fact, one should not even subtract the background in order to preserve tully
correct statistical behavior !



Conclusions

= Core photo-z algorithms are mature, little to gain here

= Completely new approaches?

= Improvements can be obtained from:

= Improving astrophysical knowledge

= Adding new features

» Tuning the model complexity

= Tuning the training set

= Combining different methods

= Use distinct mapping for different kinds ot objects

= Can we gain something from the calibration? Photon flux? Response per
object?
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