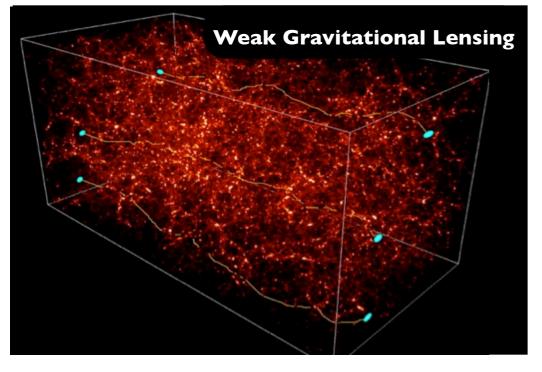
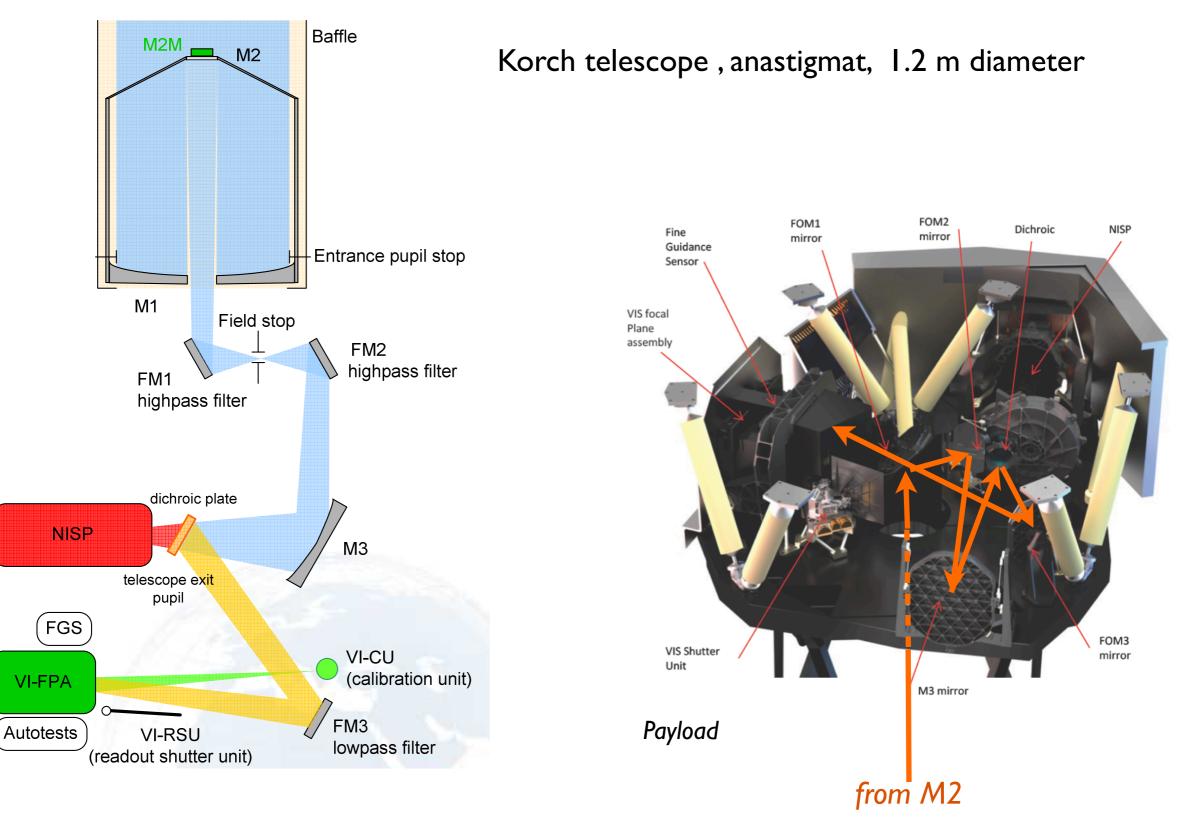

Patrick Tisserand (IAP)

OU-VIS team : Catherine Grenet, Henry Joy McCracken, Kevin Benson, Sibylle Techene, Olivier Herent, Patrick Hudelot, Raphael Gavazzi, Richard Massey, Israel Holger, Mike Irwin, Eduardo Gonzalez-Solares, Marco Riello, Chris Dolding, Mark Cropper and Ruyman Azzollini


<u>VIS</u>: focus on PSF

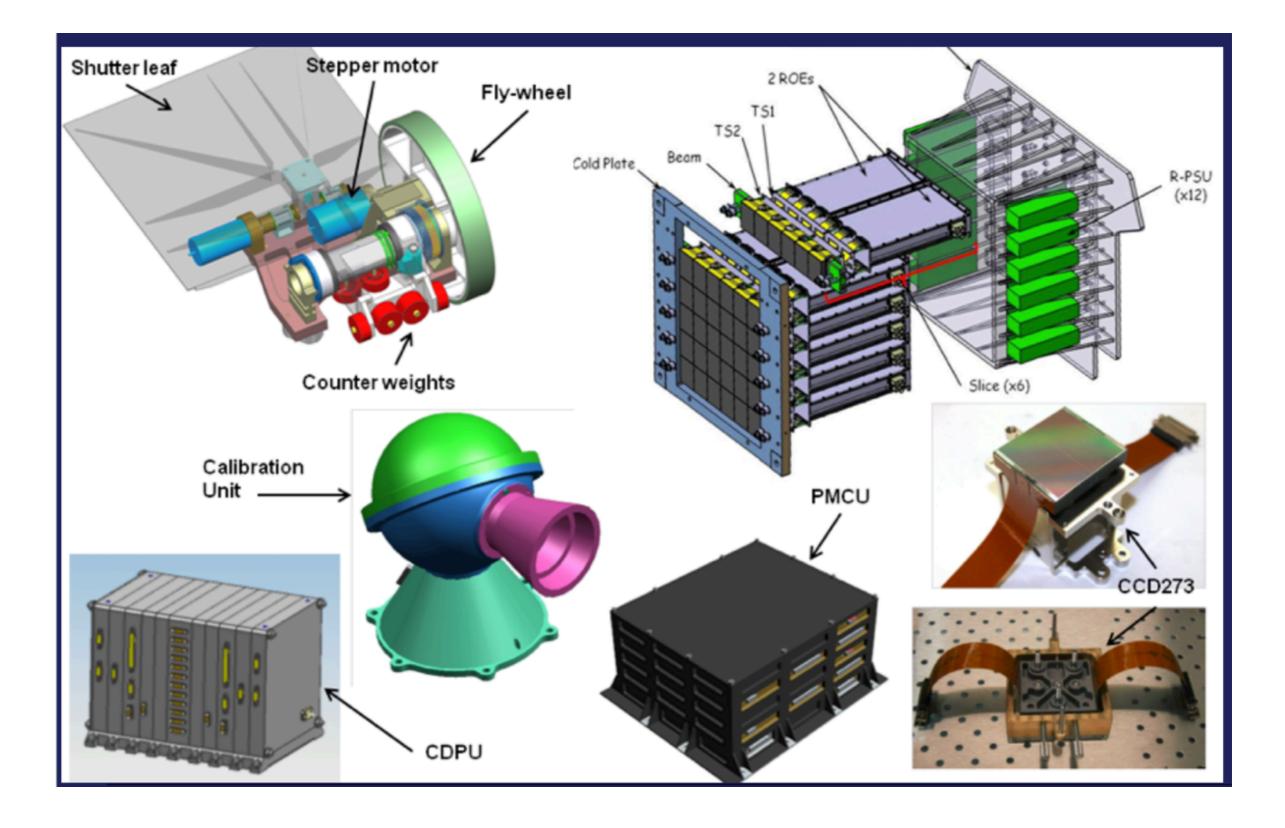
PSF variation in wavelength, flux and position across the field

It drives most of the VIS requirements

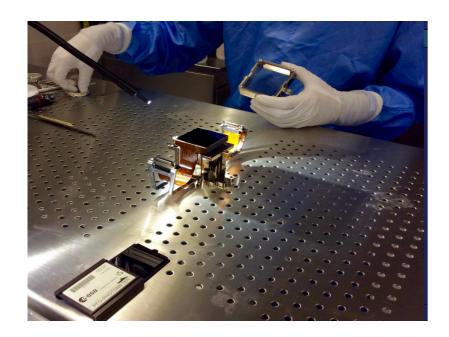

Calibrate VIS images: remove all known instrumental effects related to the optics, detectors and electronics

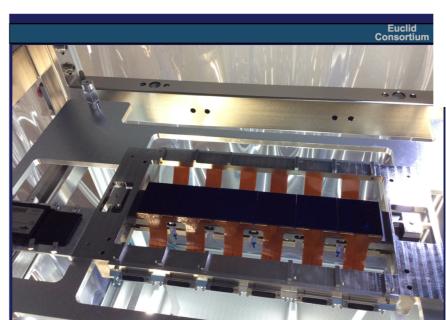
Knowledge of the systematics and their evolution is crucial !

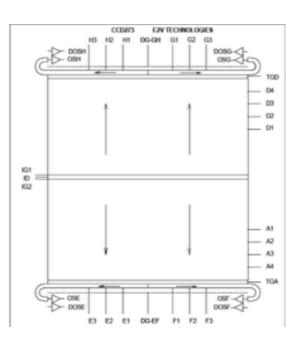
Use of specific calibrations images to estimate them.

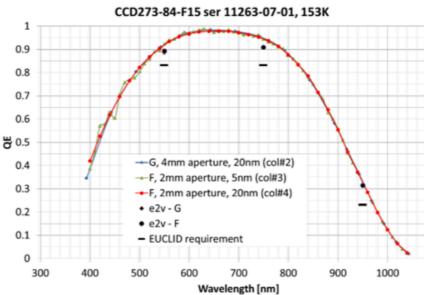


Optical path

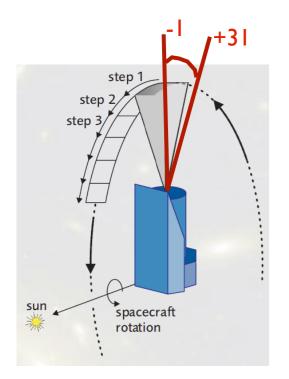

VIS subsystems

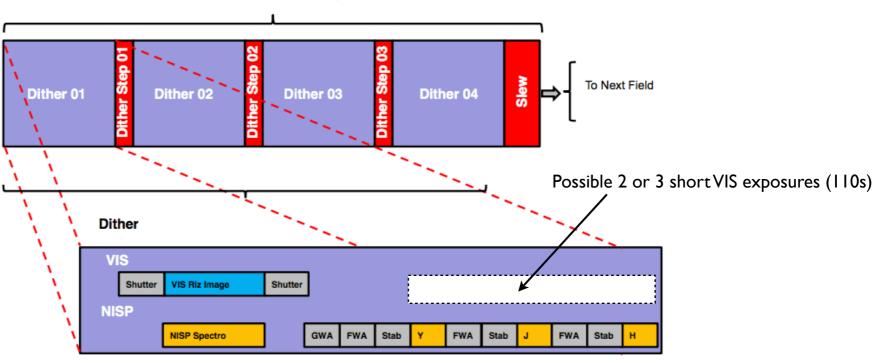


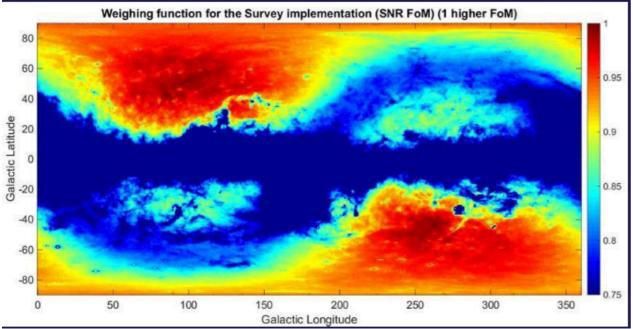


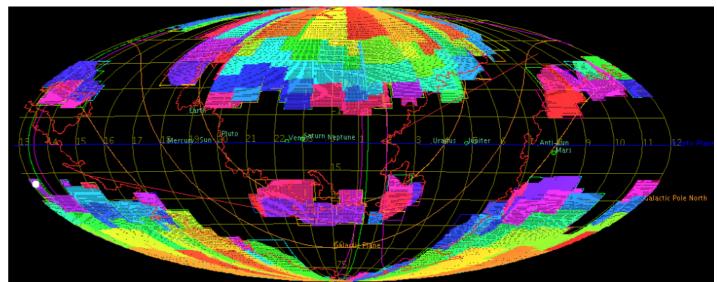

Some characteristics

- Camera : 0.54 deg² FoV
- 0.55 < lambda < 0.9 microns
- 36 4kx4k e2v CCD-273
 - -12x12 micron pixel size
 - 4 read-out circuits
 - back-thinned to 40 micron
 - read noise < 4.5 e-
 - charge injection line
- Pixel: 0.1 x 0.1 arcsec
- PSF FWHM : 0.18 arcsec
- 565 s exposure (+ possibilities of shorter exposures)
- gap between CCDs : ~50 arcsec..

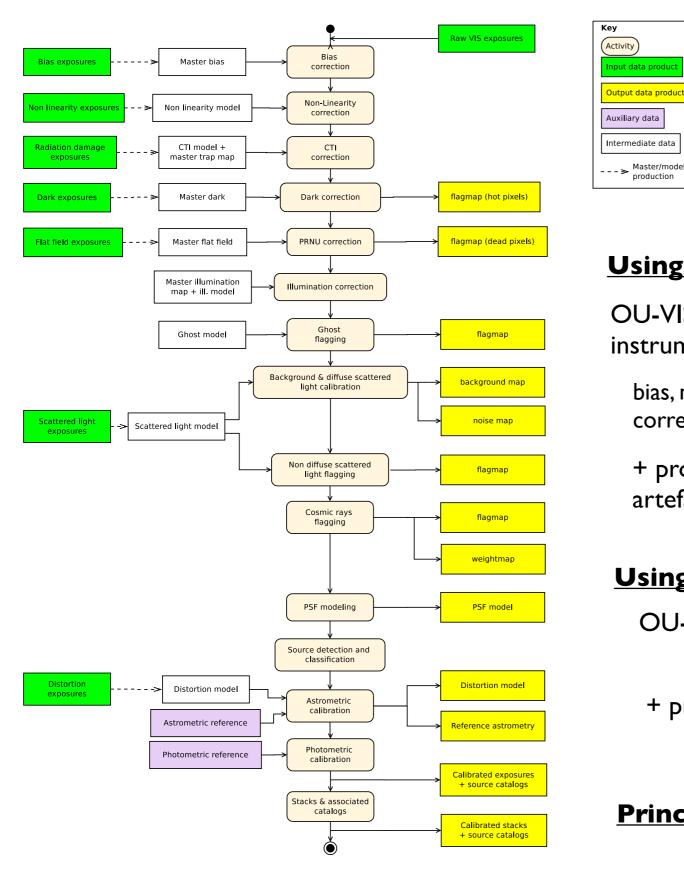





Euclid Wide Survey


Wide field survey of 15 000 deg² with |b| > 30 deg Strong constraints on: Galactic extinction, stellar density, zodiacal light

Nominal Science Observation Sequence: 4500 to 5000 s


Preliminary simulation of the scheduler (colour coded per year)

OU-VIS Processing function

nput data prod

Master/model

production

Using specific calibration data:

OU-VIS should correct every raw exposure from the instrumental effects:

bias, non-linearity, CTI, pixel-pixel non-uniformity, illumination correction, scattered light...

+ produce maps of artifacts (cosmics rays, ghosts, electronic artefacts..) and of the background / noises.

Using external data:

OU-VIS should produce the astrometric and photometric solution for every exposure

+ produce stack images, and catalogue of sources

Principal clients: OU-SHE and -MER, but also -NIR and -EXT

OU-VIS PF roadmap

VIS PF development is done by successive versions. The schedule of the major versions is recalled below:

	Version	Status - Constraints	Delivery date	Required maturity level
	vo	Breadboard - SC#2, TK1	2016 April	2A
\rightarrow	V1	Breadboard - SC#3	2016 December	2A
	v2	Development - SC#4,5,6	2017 September	3A
	v3	Development - TK2	2018 April	3A
	V4	Operational - SC#7	2019 March	3B
	v5	Operational - SC#8	2020 March	3B

For each processing elements (PE), we defined 4 major development levels which has to follow the VIS simulator capabilities for tests and validations, and the avaibility VIS instrument data and models :

Lo: basic implementation of the algorithm

L1: refinements or complements, e.g. handling of wavelength dependency after a first, purely monochromatic,

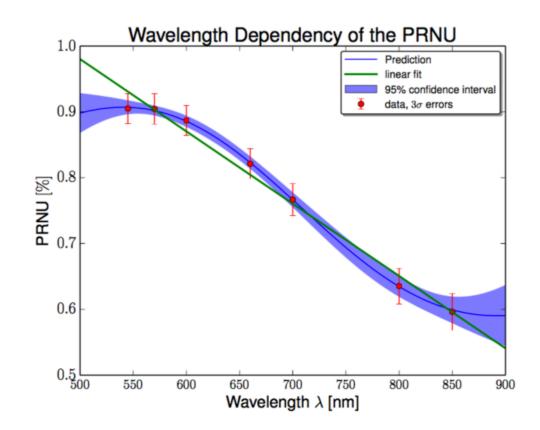
implementation. This process may consist of several steps depending on PE complexity and simulations availability.

L2: upgrade and refinements of the algorithms based on a better understanding instrumental data, when available (electronic or optical)

L3: a new version will be released after exploration of the different parameters and determining for which range the requirements are met, and after computing optimization.

		↓					
Processing element	Responsability per Institute	vo	V1	V2	v3	v 4	v 5
Bias correction	MSSL	Lo	L1,L2		L3		
Non linearity correction	MSSL	Lo	L1	L2	L3		
CTI correction	Durham	Lo	L1.1	L1.2	L2	L3	
Dark correction	MSSL			Lo	L1,L2,L3		
Saturated pixel masking	IAP		Lo,L1		L2,L3		
PRNU correction	MSSL	Lo	L1	L2	L3		
Cosmic ray flagging	IAP	Lo	L1		L2	L3	
Illumination correction	MSSL			Lo	L1,L2	L3	
Ghost flagging	IAP	Lo	L1.1	L1.2	L2	L3	
Background calibration	IAP		Lo	L1	L2	L3	
Scattered light flagging	IAP			Lo	L1,L2	L3	
PSF modeling quality flag	MSSL		Lo		L1,L2	L3	
Source detection & classif	IAP	Lo		L1	L2	L3	
Astrometric calibration	IoA	Lo	L1	L2		L3	
Photometric calibration	IAP		Lo	L1	L2	L3	
Stacking	IAP	Lo	L1			L2,L3	

OU-VIS Requirements examples


Driven by the impact of each correction on the PSF size and ellipticity

	ID	Requirement	Parent	Rationale Text
Bias	R-GDP-CAL-052	Utilizing the bias calibration data described in P-R-VS-CAL-F-0001 and R- CAL-B-VS-2110, the ground data processing shall be able to correct the bias with a mean error < 0.05 e ⁻ (TBC) in the floor level and < 0.3 e ⁻ (TBC) on the slope of the floor level in the local PSF on a scale of 60 × 60 pixels.	R-CAL-B-VS-2110, R-CAL-B-VS-1110, R-CAL-B-VS-4260	(none)
PRNU	R-GDP-CAL-054	Utilizing the calibration data described in P-R-VS-CAL-F-002, the ground data processing shall be able to correct the pixel-to-pixel non-uniformity with an rms error $< 1 \times 10^{-4}$ (TBC) on a scale of 60 x 60 pixels.	R-CAL-B-VS-1200, R-CAL-B-VS-2200	(none)
Non-linearity	R-GDP-CAL-058	Utilizing the calibration data described in R-CAL-B-VS-1410 and R-CAL-B-VS-2410, the ground data processing shall be able to correct the detector chain non-linearity on a scale of a detector quadrant to better than 2 10 ⁻⁴ (TBC) at any flux level up to 90% of the dynamical range of the detector.	R-CAL-B-VS-1400, R-CAL-B-VS-2400, R-CAL-B-VS-4280	(none)
CTI	R-GDP-CAL-010	The residuals of the correction of the contribution of CTI to the ellipticity of the system PSF shall be less than 1.1 × 10 ⁻⁴ (1-sigma) per VIS exposure per ellipticity component.	MRD-WL-018	This allocation is for the residual after the data processing step of correcting for the CTI effect in the images. This assumes: - a level of shielding limiting the exposure of the VIS CCDs to a proton fluence of 4.8×10 ⁹ equivalent 10MeV protons per cm2 at EOL (SRD-PLM-32 + factor 2 margin according to EIR-046). - a VIS detection chain readout noise lower than 4.5 electron rms (R-VIS-P-021). - the availability of on-ground CTI calibration and characterization data (including trap constant variation) as a function of the TID.

PRNU

Need of multiple LEDs to characterise the pixel-to-pixel variation

Each PRNU maps will be produced and a yellow correction will be applied on each image.

OU-SHE will use these informations to optimise their PSF model.

Possible improvement for legacy: correction depending of each object's SED

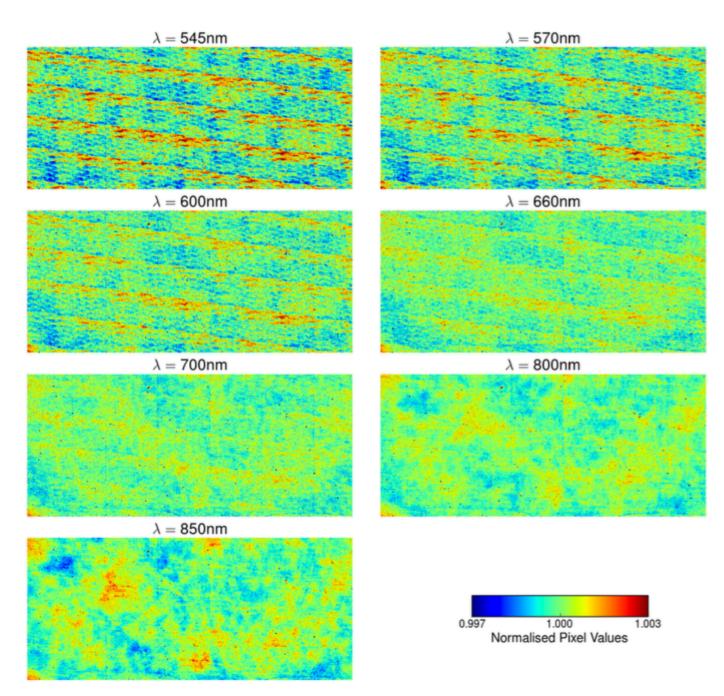


Figure 5.2.: Gaussian smoothed PRNU maps. The smoothing has been applied to enhance small-scale features and is applied for visualisation purposes only. The area shown for each cutout is about 3200×1400 pixels.

Ground calibration

"VIS Calibration Plan" (Niemi 2014)

Level of each CCD+ROE individually

(function of temperature, CCD operating parameters (voltage) and wavelength.)

Bias level and read noise Dark Flat-field Non-linearity and gain PSF - charge diffusion

Level of the FPA:

(at nominal temperature and operating voltage) Position of each CCD (tilt, rotation, relative distances) Bias level and read noise Flat-field and gain

Level of Payload: study of cross-talk

(at nominal temperature and operating voltage) Bias level and read noise Flat-field and gain

> Each CCD's bandpass should also be done on the ground. Measure of the transmission / reflection curve of each optical elements?

On-sky calibration

PV Phase (2 months)

"VIS Calibration Plan" (Niemi 2014)

Scattered Light Map : multiple observations (rotation / angular distance) near bright stars

Geometric distortion model + PSF model : dense stellar field observation

-> function of: focal plane position, rotation, wavelength, temperature, instrument state, SAA

Other ideas:

Out of focus images: constraint on the optical model, energy distribution Series of bias exposures: electronic temporal variation + with temperature Interferences studies between EUCLID instruments: optical and electronic (cross-talk) many more..

On-sky calibration

Nominal operation "VIS Calibration Plan"

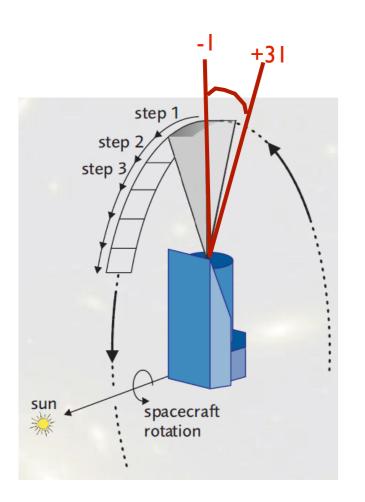
Observing Condition: Each exposure must be taken under conditions, which are as similar as possible to the Wide Survey observations. (worry: the 110 deg of SAA for the South Deep field)

<u>Bias</u>	Flat-field	Non-linearity	<u>CTI</u>		<u>cosmetic</u>	
I daily	6 per day, one per LED	monthly sequence	<pre>14 exposures per day (charge injection exp. + trap pumping)</pre>		4 dark exp. daily	
Tot duration: 80s	Tot duration: 6x(20+80) = 600s	Tot duration: 10s, 50s, 150s, and 565s (+4x80s) = 1095s	Tot duratio ~14x100 = 14		Tot duration: 4x(350+80) = 1720s	
<i>Outputs:</i> ADC offset level and variations + readout noise per node.	<i>Outputs</i> : CCD pixel-to-pixel variations as a function of wavelength, dead pixels, and detection chain gain.	<i>Outputs</i> : Detection chain non- linearity curve for each output node.	Refine the radiation damage model + location of traps		<i>Outputs:</i> dark current, Hot and warm pixel maps, cosmic ray fluence	
Only one, no study of electronic temporal evolution with consecutive epochs	PRNU map made monthly	Strategy not well define high density field ? CU lamp illumination Charge injection ?		month	PSF model ly obs. of dense fields for PSF colour dance	

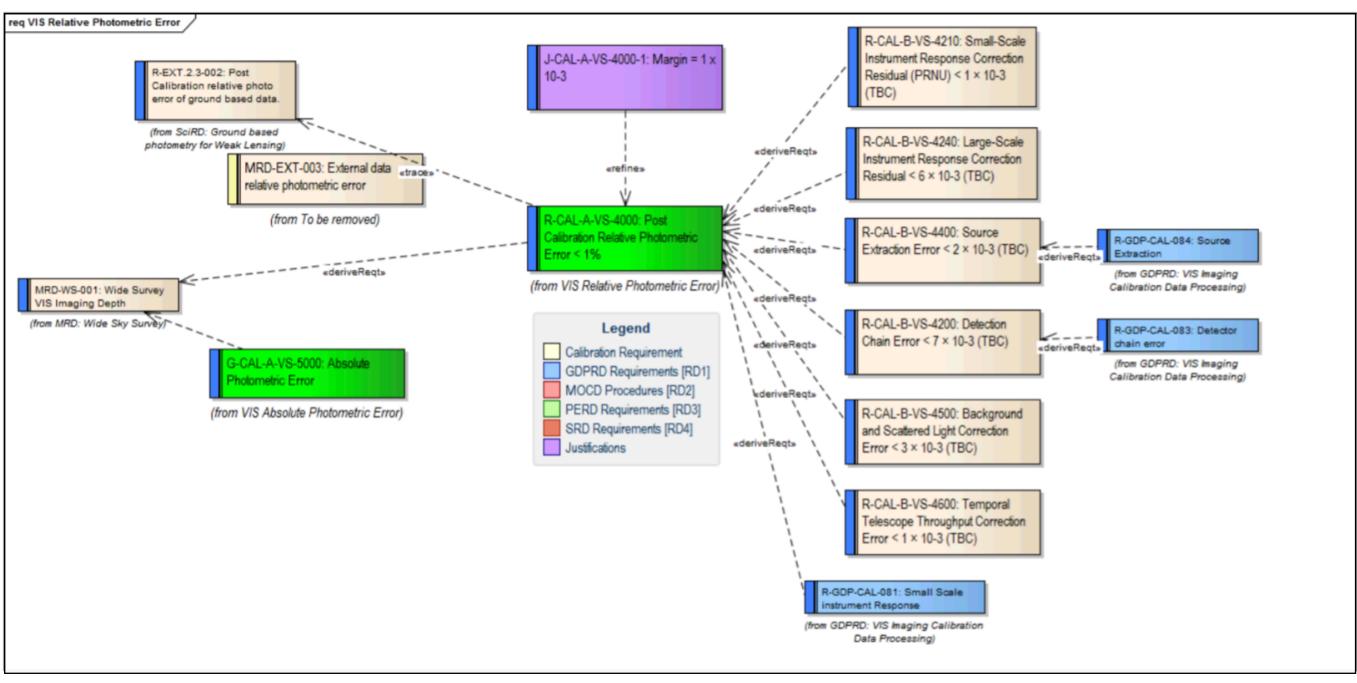
Main influence on the photometry

We expect the overall system to be stable - advantage !

Successful relative photometric calibration will come first from a good understanding and correction of the electronic / photometric biases


Wide band 550-900 nm (griz): optical + electronic

Variabilities:


- wavelength PSF variation
- across focal plane:
 - geometric distortion
 - background (large and small scale)
 - ghosts from dichroic
 - illumination (shutter)
- temporal variability :
 - temperature variation (SAA)
 - CTI aggravating
 - Flat-field, cosmetic, ..
 - optical focus shift ?

Source detection and photometry:

- PSF fitting on S/N > 30
- compare with simple aperture photometry on isolated objects
- good knowledge of the background needed
- Actual tools: Astromatic (SExtractor and PSFEx)

VIS relative photometry budget

Calibration Concept Document: Part B

Homogeneisation of the photometry accross all the fields taking care of the variabilities (temporal, focal plane, wavelength) Then pin down with standard stars for the absolute photometry.

Relative photometry :

- Colour correction: need of OU-MER informations on objects SED for colour informations (from NISP, CFHT, LSST, DES..)

- Dithering : using common area of the same fields and adjacent fields is a good cross-check, but not sufficient as we do not cover up the large scale variation across the field.

- Using deep fields images : different rotations, perhaps larger dither too(?)
- Short VIS exposures: useful for detector response linearity check
- Special photometric sequence : logarythm increasing steps like SNLS

(Regnault et al., 2009) on dense stellar field

Absolute photometry (AB mag) :

- Secondary standard stars (fainter than 16 mag), .. brighter OK with shorter exposures
- Numerous red dwarfs in our fields: GAIA distance, NISP spectra, SED from OU-MER
- Star clusters

R-GDP-CAL-087	Utilizing the calibration data described in P-R-CAL-F-009, the ground data processing must be able to calibrate the VIS absolute photometric error < 5 % (TBC).	G-CAL-A-VS-5000	
---------------	---	-----------------	--