Csilla Orgel - Personal Profiles
Csilla Orgel
Internal Research Fellow on Planetary Surface Exploration
Main Research Fields
-
Planetary geology and mineralogy
-
Planetary geomorphology: glacial and periglacial, and fluvio-deltaic processes on Mars
-
Impacts and early Solar System formation
-
Geospatial analysis of planetary data, planetary mapping
-
Spacecraft surface operations and related planning and optimization
-
Planetary bodies: Mars, the Moon, and Mercury
Keywords
Exploration, Planetary Geology, Geospatial Analysis, Spacecraft Surface Operations, ExoMars 2022, Mars Sample Return, Luna-27/PROSPECT
Ongoing collaborations
Publications
Riedel, C., Minton, D. A., Michael, G., Orgel., C., van der Bogert, C. H., Hiesinger, H. 2020: Degradation of Small Simple and Large Complex Lunar Craters: Not a Simple Scale Dependence. – Journal of Geophysical Research, 125, e2019JE006273, https://doi.org/10.1029/2019JE006273,
Orgel, C., Fassett, C. I., Michael, G., Riedel, C., van der Bogert, C. H., Hiesinger, H. 2020: Re-examination of the population, stratigraphy, and sequence of mercurian basins: Implications for Mercury´s early impact history and comparison with the Moon. – Journal of Geophysical Research, 125, e2019JE006212. https://doi.org/10.1029/2019JE006212,
Poulet, F., Gross, C., Horgan, B., Loizeau, D., Bishop, J. L., Carter, J., Orgel, C. 2020: Mawrth Vallis, Mars: a fascinating place for in situ exploration. – Astrobiology, 20, 2, http://doi:10.1089/ast.2019.2074
Sejourne, A., Costard, F., Swirad, Z. M., Losiak, A., Bouley, S., Smith, I., Balme, M. R., Orgel, C., Ramsdale, J. D., Hauber, E., Conway, S. J., van Gasselt, S., Reiss, D., Johnsson, A., Gallagher, C., Skinner, J. A., Kereszturi, A., Platz, T. 2019: Mapping the northern plains of Mars: using morphotype and distribution of ice-related landforms to understand multiple ice-rich deposits in Utopia Planitia. - Journal of Geophysical Research, 124, 2, 483-503, http://doi:10.1029/2018JE005665
Orgel, C., Hauber, E., van Gasselt, S., Reiss, D., Johnsson, A., Ramsdale, J. D., Smith, I., Swirad, Z. M., Wilson, J. T., Séjourné, A., Balme, M. R., Conway, S. J., Costard, F., Eke, V. R., Gallagher, C., Kereszturi, A., Łosiak, A., Massey, R. J., Platz, T., Skinner, J. A., Teodoro, L. F. A. 2019: Gridmapping the Northern Plains of Mars: A New Overview of Recent Water- and Ice-Related Landforms in Acidalia Planitia. – Journal of Geophysical Research, 124, 2, 454-482, http://doi:10.1029/2018JE005664
Ramsdale, J. D., Balme, M. R., Gallagher, C., Conway, S. J., Smith, I., Hauber, E., Orgel, C., Séjourné, A., Costard, F., Eke, V. R., van Gasselt, S., Johnsson, A., Kereszturi, A., Łosiak, A., Massey, R. J., Platz, T., Reiss, D., Skinner, J. A., Swirad, Z. M., Teodoros, L. F. A., Wilson, J. T. 2019: Gridmapping the northern plains of Mars: Geomorphological, Radar and Water-Equivalent Hydrogen results from Arcadia Plantia suggest possible fluvial and volcanic systems overlain by a ubiquitous and heavily degraded ice-rich latitude-dependent mantle. – Journal of Geophysical Research, 124, 2, 504-527, http://doi:10.1029/2018JE005663
Ivanov, M. A., Hiesinger, H., van der Bogert, C. H., Orgel, C., Paskert, J. H., Head, J. W. 2018: Geologic history of the northern portion of the South Pole-Aitken basin on the Moon. – Journal of Geophysical Research, 123, 10, 2585-2612, https://doi.org/10.1029/2018JE005590
Allender, E. J., Orgel, C., Almeida, N. V., Cook, J., Ende, J. J., Kamps, O., Mazrouei, S., Slezak, T. J., Soini, A.-J., Kring, D. A. 2018: Traverses for the ISECG-GER Design Reference Missin for Humans on the Lunar Surface. - Advances in Space Research, 63, 1, 692-727, https://doi.org/10.1016/j.asr.2018.08.032
De Toffoli, B., Pozzobon, R., Mazzarini, F., Orgel, C., Massironi, M., Giacomini, L., Mangold, N., Cremonese, G. 2018: Estimate of depths of source fluids related to mound fields on Mars. – Planetary and Space Science, 164, 164-173, https://doi.org/10.1016/j.pss.2018.07.005
Riedel, C., Michael, G., Kneissl, T., Orgel, C., Hiesinger, H., van der Bogert, C. H. 2018: A New Tool to Account for Crater Obliteration Effects in Crater Size-Frequency Distribution Measurements. – Earth and Space Science, 5, 258-267, https://doi.org/10.1002/2018EA000383
Orgel, C., Michael, G., Fassett, C. I., van der Bogert, C. H., Riedel, C., Kneissl, T., Hiesinger, H. 2018: Ancient bombardment of the inner Solar System – Reinvestigation of the “fingerprints” of different impactor populations on the lunar surface. – Journal of Geophysical Research, 123, 3, 748–762, http://doi.org/10.1002/2017JE005451
Ramsdale, J. D., Balme, M. R., Conway, S. J., Gallagher, C., van Gasselt, S., Hauber, E., Orgel, C., Sejourne, A., Skinner, J. A., Jr., Costard, F., Johnsson, A., Losiak, A., Reiss, D., Swirad, Z., Kereszturi, A., Smith, I., Platz, T. 2017: Grid-based mapping: a method for rapidly determining the spatial distributions of small features over very large areas. – Planetary and Space Science, 140, 49-61. https://doi.org/10.1016/j.pss.2017.04.002
Cross, M., Battler, M., Maiwald, V., van’t Woud, H., Ono, A., Schlacht, I., L., Orgel, C., Foing, B., McIsaac, K. 2016: Operational Lessons Learnt from the 2013 ILEWG EuroMoonMars-B Analogue Campaign for Future Habitat Operations on Moon and Mars. – Acta Futura, 10, 61 – 73, https://zenodo.org/record/202179#.XhSbOflKg2w
Losiak, A., Gołębiowska, I., Orgel, C., Moser, L., MacArthur, J., Boyd, A., Hettrich, S., Wittek, S., Jones, N., Groemer, G. 2014: Remote Science Support during MARS2013: testing a map-based system of data processing and utilization for the future long-duration planetary missions. – Astrobiology, 14, 5, 417 – 430, http://doi:10.1089/ast.2013.1071
Groemer, G. E., Soucek, A., Frischauf, N., Stumptner, W., Ragonig, C., Sams, S., Bartenstein, T., Haeuplik-Meusburger, S., Petrova, P., Evetts, S., Sivenesan C. and the MARS2013 Team 2014: The MARS2013 Mars Analog Mission. – Astrobiology, 14, 5, 360 – 376, https://doi.org/10.1089/ast.2013.1062
Groemer, G. E., Foresta, L., Turetschek, T. and the MARS2013 Team 2014: A case for using ground-based thermal inertia measurements to detect Martian caves. – Astrobiology, 14, 5, 431 – 437, https://doi.org/10.1089/ast.2013.1063
Groemer, G. E., Sattler, B., Weisleitner, K., Hunger, L., Kohstall, C., Frisch, A., Jozefowicz, M., Meszynski, S., Storrie-Lombardi, M. and the MARS2013 Team 2014: Field trial of a Dual-Wavelength Fluorescent Emission (L.I.F.E) instrument and the Magma White rover during the MARS2013 Mars Analog Mission. – Astrobiology, 14, 5, 391 – 405, https://doi.org/10.1089/ast.2013.1081
Orgel, C., Kereszturi, A., Váczi, T., Groemer, G., Sattler, B. 2014: Scientific Results and Lessons Learned from an Integrated Crewed Mars Exploration Simulation at the Rio Tinto Mars Analogue Site. – Acta Astronautica, 94, 2, 736-748, http://doi:10.1016/j.actaastro.2013.09.014
Project/mission at ESA
ExoMars 2022
Of particular interest to the ExoMars 2020 mission is increasing our understanding of global and local processes that may have contributed to shaping the geological record at Oxia Planum and surrounding terrain. The focus is to understand the post magma ocean crustal layer, early interactions with water/ice, mechanisms to explain the origin and variability of layered clay deposits, possible hydrothermal signatures (submarine, subaerial), and post-depositional evolution of sedimentary rocks during Mars diagenesis. Additionally, I collect lessons learned from NASA MER and MSL Rover science, evaluating potential rover traverse routes, and studying targets of interest in order to optimize the potential for ExoMars 2020 to meet its science objectives, including searching for chemical biosignatures and prepare for ExoMars rover science operations.
Luna-27/PROSPECT
ESA’s PROSPECT payload will target lunar polar volatiles and has the capability to sample lunar regolith and volatiles to depths of ~1 m. Detailed analysis of lunar polar regions is needed in order to identify and validate landing site candidates both for the Luna 27 mission and future opportunities. Datasets (e.g. from Lunar Reconnaissance Orbiter, SELENE [Kaguya], and Chandrayaan-1) may be interrogated to retrieve indicators of polar volatiles, and terrain characteristics. I work on geospatial analysis of both time-varying and static quantities relevant to landing site selection and science operations; for example: illumination, temperature, elevation, slope and regolith properties.
Mars Sample Return
NASA’s Mars 2020 Rover will collect samples at the Jezero crater landing site and cache them at ‘depots’ for potential return by future MSR Campaign elements, including the ESA-led Earth Return Orbiter (ERO) mission and Sample Fetch Rover (SFR). Support in ESA’s study and planning for MSR is required in several areas, including:
- Geological characterisation of the Jezero site and potential sample tube depots
- Study of possible SFR traverses, including analysis of geospatial products generated by the NASA Mars 2020 Rover team and colleagues
- Evaluation of output generated by automated terrain classification algorithms
- Input to definition and synthesis of regolith simulants appropriate for the Jezero landing site, in collaboration with the Sample Analogue Curation Facility (SACF) at ESA-ECSAT (UK)
- Ensuring a proper link of outcomes of the above activities with the ongoing design and validation of the Sample Fetch Rover.