Background treatment in spectral analysis of low surface brightness sources

Alberto Leccardi & Silvano Molendi





EPIC background working group meeting

Garching, 2<sup>nd</sup> May 2006

### SUMMARY

# 1. SPECTRAL ANALYSIS OF LOW SURFACE BRIGHTNESS SOURCES

4. BACKGROUND MODELING IN A HARD BAND (ABOVE 2 keV)

#### **OUTER REGIONS OF CLUSTERS**



A1689 z = 0.183 $kT \approx 9 \text{ keV}$ 

ObsID 0093030101 Exposure time 36 ks (MOS) 29 ks (pn)

 $R_{max} = 5' \approx 0.9 \text{ Mpc} \approx 30\% r_{180}$ 



### **UNCERTAINTIES**

# STATISTICAL (RANDOM) UNCERTAINTIES

### **UNCERTAINTIES**

# STATISTICAL (RANDOM) UNCERTAINTIES

# UNCERTAINTIES

- Cross-calibration MOS-pn
- Background knowledge

# **UNCERTAINTIES**

Cross-calibration MOS-pn relatively good in the hard band
2-10 keV

# UNCERTAINTIES

- Background knowledge
  - NXB continuum + fluorescence lines
- **SP** highly variable component
  - hard & soft light curves
  - + IN FOV / OUT FOV ratio

# UNCERTAINTIES

- Background knowledge
- **NXB continuum + fluorescence lines**
- **SP** highly variable component
  - hard & soft light curves
  - + IN FOV / OUT FOV ratio

# UNCERTAINTIES

Background knowledge
 NXB – continuum + fluorescence lines
 SP – highly variable component
 hard & soft light curves
 + IN FOV / OUT FOV ratio

(De Luca & Molendi, 2004)

# IN FOV / OUT FOV DIAGNOSTIC



# IN FOV / OUT FOV DIAGNOSTIC



#### **UNCERTAINTIES**

# STATISTICAL (RANDOM) UNCERTAINTIES

What are the effects of the pure statistical uncertainties in determining interesting parameters, as temperature and density of the ICM, in the case of few counts/bin and a low S/N ratio, as in the outer regions of clusters of galaxies?

#### **SIMULATION**

#### **GENERATION**

#### ACCUMULATES "REAL" SPECTRUM THERMAL + POWER LAW as BACKGROUND

SIMULATES N≈1000 DIFFERENT MEASURES PERTURBING REAL SPECTRUM WITH A POISSONIAN DISTRIBUTION

#### ANALYSIS

**DIFFERENT METHODS** 

**ANALYSIS METHODS** 

#### STANDARD

#### **RENORMALIZED BACKGROUND SUBTRACTION**

<sup>2</sup> **STATISTIC** 

WEIGHTED AVERAGE OF SINGLE MEASURES

# **STANDARD METHOD**

| TEMPERATURE<br>(keV)                  | TEMPEF<br>(ke | NORMALIZATION<br>(arbitrary units)     |             |  |  |  |
|---------------------------------------|---------------|----------------------------------------|-------------|--|--|--|
| EAL MEASURE                           | REAL          | ature 15                               | MEASURED    |  |  |  |
| .00 <b>UNDERES</b><br>4.29 ± 0.02     | 5.00          | <b>TIMATED</b><br>5.50<br>- <b>25%</b> | 5.27 ± 0.02 |  |  |  |
| 0.00 7. <b>Mormali</b>                | 10.00         | zatiónsas                              | 5.38 ± 0.01 |  |  |  |
| UNDERESTIMATED                        |               |                                        |             |  |  |  |
| 0.00 7.6% ormali<br>UNDERES<br>by few | 10.00         | zatiōīs<br>TIMATED<br>percent          | 5.38 ±      |  |  |  |

### **ANALYSIS METHODS**

#### **CASH + MODEL**

BACKGROUND MODEL

#### **CASH STATISTIC**

WEIGHTED AVERAGE OF SINGLE MEASURES

# **CASH + MODEL METHOD**

| RATURE<br>eV)                    | NORMALIZATION<br>(arbitrary units)                                                                |                                                                                                                                                                                                                  |  |  |  |  |
|----------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| MEASURPER                        | ature 45                                                                                          | MEASURED                                                                                                                                                                                                         |  |  |  |  |
| UNDERES<br>4.45 ± 0.03           | <b>TIMATED</b><br>5.50<br><b>-20%</b>                                                             | 5.30 ± 0.02                                                                                                                                                                                                      |  |  |  |  |
| 7. Normali                       | zatiōīs                                                                                           | 5.46 ± 0.01                                                                                                                                                                                                      |  |  |  |  |
| UNDERESTIMATED<br>by fow percent |                                                                                                   |                                                                                                                                                                                                                  |  |  |  |  |
|                                  | RATURE<br>eV)<br>MEASHREE<br>UNDERES<br>4.45 ± 0.03<br>by 10<br>7.97 or mali<br>UNDERES<br>by few | RATURENORMAL<br>(arbitrationV)(arbitrationMEASUREatureAsMEASUREatureAsUNDERESTIMATED<br>5.504.45 ± 0.03<br>by 105.507.%ormalizations (arbitration)7.%ormalizations (arbitration)UNDERESTIMATED<br>by few percent |  |  |  |  |

### **ANALYSIS METHODS**

#### BEST

#### BACKGROUND MODEL

#### **CASH STATISTIC**

#### JOINED PROBABILITY DISTRIBUTION

WEIGHTED AVERAGE OF "TRIPLETS"





### **BEST METHOD**

| TEMPEF<br>(ke | RATURE<br>eV)                                   | NORMALIZATION<br>(arbitrary units)             |             |  |
|---------------|-------------------------------------------------|------------------------------------------------|-------------|--|
| REAL          | MEASURED                                        | REAL                                           | MEASURED    |  |
| 5.00          | 4. <b>PENIØ4R</b>                               | KABLOY                                         | 5.48 ± 0.02 |  |
| 10.00         | <b>correct</b><br>9.96 ± 0.11<br><b>Normali</b> | ( <b>&lt;0.5%)</b><br>5.50<br><b>zation is</b> | 5.55 ± 0.01 |  |

nearly correct ( $\approx 1\%$ )



#### SUMMARIZING...

Background has to be modeled

Cash statistic has to be used

Probability distributions have to be joined in

a particular way

FURTHER ADVANTAGES IN MODELING BACKGROUND

NO pn OoT subtraction

•NO errors propagation

MORE information about BKG

#### NO pn OoT subtraction means...

modeling Background <del>subtraction</del>

Grouping of pn normal and OoT spectra to approximate gaussian errors

Direct subtraction of pn Dor spectrum with mathpha

Some error propagation

Loss of information on the original spectrum

Pn OoT is associated by *grppha* NO information lost

### SUMMARY

# 1. SPECTRAL ANALYSIS OF LOW SURFACE BRIGHTNESS SOURCES

4. BACKGROUND MODELING IN A HARD BAND (ABOVE 2 keV)

### **SUMMARY**

# 1. SPECTRAL ANALYSIS OF LOW SURFACE BRIGHTNESS SOURCES

4. BACKGROUND MODELING IN A HARD BAND (ABOVE 2 keV)

#### •NXB continuum

# •NXB fluorescence emission lines

Cosmic extragalactic background

MOS1 background model in the outer ring



MOS1 background model in the outer ring



MOS1 background model in the outer ring



| NXB          | EPIC - MO    | S1  | EPIC – MC       | <b>)</b> S2 | EPIC - pn       |      |
|--------------|--------------|-----|-----------------|-------------|-----------------|------|
|              | Ν            | Ν   | Ν               | Ν           | Ν               | Ν    |
| Closed       | 57.7         | 1.7 | 57.3            | 1.7         | 97.5            | 3.9  |
| Blank fields | 57.5 ± 1.4   | 4.3 | 57.2 ± 1.7      | 5.1         | 95.1 ± 2.4      | 7.1  |
| Clusters     | 60.9 ± 1.4   | 8.0 | 60.9 ± 1.2 6.6  |             | 100.1 ± 2.5     | 14.1 |
|              |              |     |                 |             |                 |      |
|              | EPIC - MO    | S1  | EPIC – MC       | )S2         | EPIC - pn       |      |
| СХВ          | Ν            | Ν   | Ν               | Ν           | N               | Ν    |
| Expected     | 7.82         | 1.8 | 7.84            | 1.8         | 4.58            | 1.3  |
| Blank fields | 7.65 ± 0.47  | 1.4 | $7.26 \pm 0.52$ | 1.6         | $4.38 \pm 0.48$ | 1.4  |
| Clusters     | 10.17 ± 0.42 | 2.4 | 9.72 ± 0.43     | 2.4         | 6.54 ± 0.29     | 1.7  |

|                                        | EPIC - MO                             | S1               | EPIC – MC                             | )S2                    | EPIC - pn                            |                      |  |
|----------------------------------------|---------------------------------------|------------------|---------------------------------------|------------------------|--------------------------------------|----------------------|--|
| INAD                                   | Ν                                     | Ν                | Ν                                     | N N                    |                                      | Ν                    |  |
| Closed                                 | 57.7                                  | 1.7              | 57.3                                  | 1.7                    | 97.5                                 | 3.9                  |  |
| Blank fields                           | 57.5 ± 1.4                            | 4.3              | 57.2 ± 1.7                            | 5.1                    | 95.1 ± 2.4                           | 7.1                  |  |
| Clusters                               | 60.9 ± 1.4                            | 8.0              | 8.0 60.9 ± 1.2 6.6                    |                        | 100.1 ± 2.5                          | 14.1                 |  |
|                                        |                                       |                  |                                       |                        |                                      |                      |  |
|                                        |                                       |                  |                                       |                        |                                      |                      |  |
| СХВ                                    | EPIC - MO                             | S1               | EPIC – MC                             | )S2                    | EPIC - p                             | n                    |  |
| СХВ                                    | EPIC - MO<br>N                        | S1<br>N          | EPIC – MC<br>N                        | )S2<br>N               | EPIC - p<br>N                        | n<br>N               |  |
| <b>CXB</b><br>Expected                 | EPIC - MO<br>N<br>7.82                | S1<br>∾<br>1.8   | EPIC – MC<br>N<br>7.84                | )S2<br>ℕ<br>1.8        | EPIC - p<br>N<br>4.58                | n<br>∾<br>1.3        |  |
| <b>CXB</b><br>Expected<br>Blank fields | EPIC - MO<br>N<br>7.82<br>7.65 ± 0.47 | S1<br>1.8<br>1.4 | EPIC – MC<br>N<br>7.84<br>7.26 ± 0.52 | )S2<br>∾<br>1.8<br>1.6 | EPIC - p<br>N<br>4.58<br>4.38 ± 0.48 | n<br>∾<br>1.3<br>1.4 |  |

MOS1 background model in the outer ring



NXB continuum + fluorescence lines Cosmic X-ray background

MOS1 background model in the outer ring



|                                        | EPIC - MO                             | S1               | EPIC – MC                             | )S2                    | EPIC - pn                            |                      |  |
|----------------------------------------|---------------------------------------|------------------|---------------------------------------|------------------------|--------------------------------------|----------------------|--|
| INAD                                   | Ν                                     | Ν                | Ν                                     | N N                    |                                      | Ν                    |  |
| Closed                                 | 57.7                                  | 1.7              | 57.3                                  | 1.7                    | 97.5                                 | 3.9                  |  |
| Blank fields                           | 57.5 ± 1.4                            | 4.3              | 57.2 ± 1.7                            | 5.1                    | 95.1 ± 2.4                           | 7.1                  |  |
| Clusters                               | 60.9 ± 1.4                            | 8.0              | 8.0 60.9 ± 1.2 6.6                    |                        | 100.1 ± 2.5                          | 14.1                 |  |
|                                        |                                       |                  |                                       |                        |                                      |                      |  |
|                                        |                                       |                  |                                       |                        |                                      |                      |  |
| СХВ                                    | EPIC - MO                             | S1               | EPIC – MC                             | S2                     | EPIC - p                             | n                    |  |
| СХВ                                    | EPIC - MO<br>N                        | S1<br>N          | EPIC – MC<br>N                        | )S2<br>N               | EPIC - p<br>N                        | n<br>N               |  |
| <b>CXB</b><br>Expected                 | EPIC - MO<br>N<br>7.82                | S1<br>∾<br>1.8   | EPIC – MC<br>N<br>7.84                | )S2<br>ℕ<br>1.8        | EPIC - p<br>N<br>4.58                | n<br>∾<br>1.3        |  |
| <b>CXB</b><br>Expected<br>Blank fields | EPIC - MO<br>N<br>7.82<br>7.65 ± 0.47 | S1<br>1.8<br>1.4 | EPIC – MC<br>N<br>7.84<br>7.26 ± 0.52 | NS2<br>N<br>1.8<br>1.6 | EPIC - p<br>N<br>4.58<br>4.38 ± 0.48 | n<br>∾<br>1.3<br>1.4 |  |

| NXB                                    | EPIC - MO                             | S1                    | EPIC – MOS2                           |                        | EPIC - pn                            |                      |
|----------------------------------------|---------------------------------------|-----------------------|---------------------------------------|------------------------|--------------------------------------|----------------------|
|                                        | Ν                                     | Ν                     | Ν                                     | N N                    |                                      | Ν                    |
| Closed                                 | 57.7                                  | 1.7                   | 57.3                                  | 1.7                    | 97.5                                 | 3.9                  |
| Blank fields                           | 57.5 ± 1.4                            | 4.3                   | 57.2 ± 1.7                            | 5.1                    | 95.1 ± 2.4                           | 7.1                  |
| Clusters                               | 60.9 ± 1.4                            | 8.0                   | 8.0 60.9 ± 1.2 6.6                    |                        | 100.1 ± 2.5                          | 14.1                 |
|                                        |                                       |                       |                                       |                        |                                      |                      |
|                                        |                                       |                       |                                       |                        |                                      |                      |
| CXB                                    | EPIC - MO                             | S1                    | EPIC – MC                             | S2                     | EPIC - p                             | n                    |
| СХВ                                    | EPIC - MO<br>N                        | S1<br>ℕ               | EPIC – MC<br>N                        | )S2<br>N               | EPIC - p<br>N                        | n<br>N               |
| <b>CXB</b><br>Expected                 | EPIC - MO<br>N<br>7.82                | S1<br>∾<br>1.8        | EPIC – MC<br>N<br>7.84                | NS2<br>N<br>1.8        | EPIC - p<br>N<br>4.58                | n<br>∾<br>1.3        |
| <b>CXB</b><br>Expected<br>Blank fields | EPIC - MO<br>N<br>7.82<br>7.65 ± 0.47 | S1<br>∾<br>1.8<br>1.4 | EPIC – MC<br>N<br>7.84<br>7.26 ± 0.52 | NS2<br>N<br>1.8<br>1.6 | EPIC - p<br>N<br>4.58<br>4.38 ± 0.48 | n<br>∾<br>1.3<br>1.4 |

#### **NXB FLUORESCENCE LINES**

|    | EPIC – MOS1 |      |      | EPIC – MOS2 |     |      | EPIC - pn |      |      |
|----|-------------|------|------|-------------|-----|------|-----------|------|------|
|    | CL          | BF   | SO   | CL          | BF  | SO   | CL        | BF   | SO   |
| Cr | 8.5         | 10.4 | 12.2 | 3.8         | 9.2 | 10.4 | 6.8       | 11.0 | 10.6 |
| Mn | 6.6         | 7.6  | 10.4 | 8.5         | 7.5 | 6.2  |           |      |      |
| Fe | 9.3         | 8.2  | 7.6  | 7.9         | 9.3 | 7.5  | 9.0       | 12.4 | 11.7 |
| Ni | 4.0         | 4.1  | 3.6  | 7.9         | 6.1 | 5.1  | 126.      | 128. | 126. |
| Cu | 4.6         | 5.0  | 5.5  | 2.2         | 4.5 | 3.9  | 883.      | 887. | 877. |
| Zn | 9.3         | 3.6  | 6.9  | 3.4         | 4.1 | 5.4  | 97.9      | 97.1 | 93.9 |
| Au | 10.3        | 10.6 | 12.4 | 12.2        | 8.9 | 7.9  |           |      |      |

CL = closed - BF = blank fields - SO = sources (clusters)

### SUMMARY

Background has to be modeled

Cash statistic has to be used

•Probability distributions have to be joined in a particular way