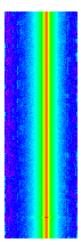
Current Status of the Blank Field Templates for the PN Timing Mode

Benjamin Mück¹ M. Guainazzi², E. Kendziorra¹, C. Tenzer¹

¹Institute for Astronomy and Astrophysics & Kepler Center for Astro and Particle Physics, University of Tübingen ²ESAC - ESA

> EPIC - BOC 6th March 2012

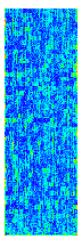

D			
Β.	IV	П	٦ĸ

Outline

Why do we need a PN TM background template?

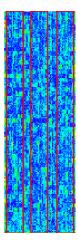
- 2 How can we get a Blank Field?
 - Check with PN data
 - Check with MOS data
- Iccation of the Blank Fields
- 4 RGS background count rate A gauge
- 5 Summary and Outlook

Reminder: Background for PN TM Observations

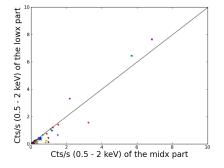


Problems

- most counts in the central region
- also source photons at the border of the ccd
- no "blank" region to extract background


▶ < ∃ >

Reminder: Background for PN TM Observations

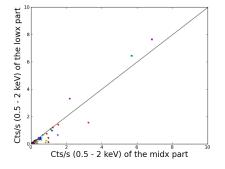

Solution

- examine all observations performed in Timing Mode
 - (> 200 public available)
- check for "Blank Fields" (\sim 60)
- check if they are really blank

Blank Field check

- Count rate of 3 detector parts
- in 3 energy ranges:
 0.5 2.0 keV
 2.0 5.0 keV
 - 5.0 10.0 keV
- compare the count rate ratios of the three regions
- get the expected ratio with help of the effective area

Blank Field check


Calculate the ratios for lowx vs midx, highx vs midx and lowx vs highx

Notstrict

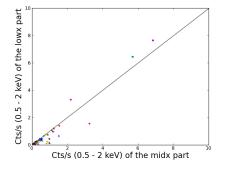
Screening criterion valid for lowx vs midx and highx vs midx

Strict

Screening criterion valid for lowx vs midx, highx vs midx and lowx vs highx

Blank Field check

Calculate the ratios for lowx vs midx, highx vs midx and lowx vs highx


Notstrict

Screening criterion valid for lowx vs midx and highx vs midx

Strict

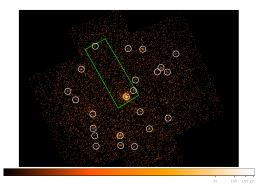
Screening criterion valid for lowx vs midx, highx vs midx and lowx vs highx

 \rightarrow 30 observations classified as "blank" (not strict)

Blank Field check

Calculate the ratios for lowx vs midx, highx vs midx and lowx vs highx

Notstrict

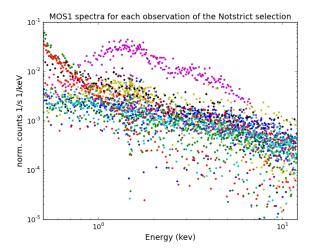

Screening criterion valid for lowx vs midx and highx vs midx

Strict

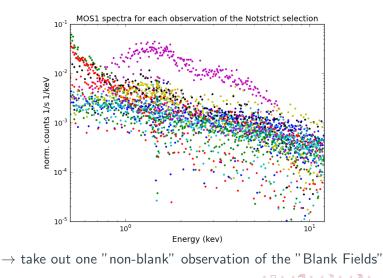
Screening criterion valid for lowx vs midx, highx vs midx and lowx vs highx

 \rightarrow 30 observations classified as "blank" (not strict) \rightarrow 16 observations classified as "blank" (strict)

Sources Detected in MOS?

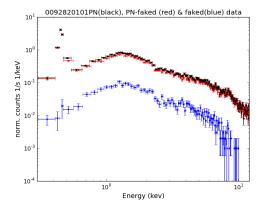

MOS data

- run edetect_chain on available MOS data for the same observations
- nearly all observations (even those that look Blank in TM) show a source

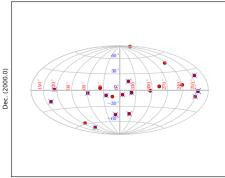

The Corresponding MOS Spectra

- sum up the spectra of all sources in the view of sight of the midx region of the PN CCD #4
- use Filter Wheel Closed Data of MOS1 and MOS2 to deal with internal background of the same regions
- fit simple model (bbody + powerlaw) to the summed spectra
- reduced χ^2 should be close to 1
- countercheck with MOS2 data
- fake PN spectrum and subtract from the "Blank Field"

The Corresponding MOS Spectra



The Corresponding MOS Spectra


EPIC-BOC

Blank Fields - Faked Spectra - Subtracted Spectra

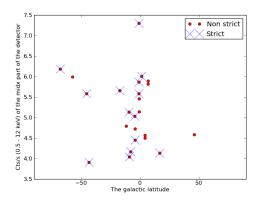
- faked PN spectra exhibit typically a count rate of 10% of the "Blank Field"
- Subtraction does not change the spectrum significantly

Remaining Blank Fields in Galactic Coordinates

Fig. 1: Blank field observations

R.A. (2000.0)

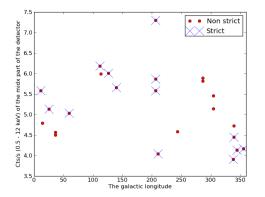
 no clustering of the observations


red points - Non strict blue crosses - Strict

B. Mück

EPIC-BOC

▶ < ∃ >


Remaining Blank Fields in Galactic Coordinates

- no clustering of the observations
- background shows no dependence on the galactic latitude

3. N	lück			

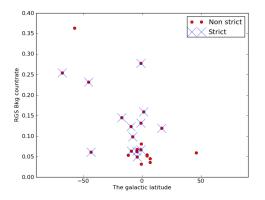
Remaining Blank Fields in Galactic Coordinates

- no clustering of the observations
- background shows no dependence on the galactic latitude
- background shows no dependence on the galactic longitude

э

イロト イポト イヨト イヨト

PN TM Blank Field	EPIC-BOC	11 / 15

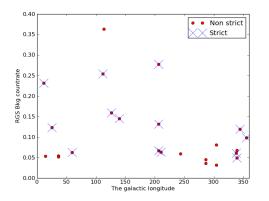

We Need a Gauge for the Background

Idea

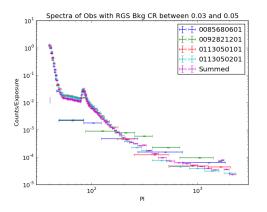
- use RGS background count rate as gauge which Blank Field template we have to use
- independent measure for the background
- check for dependence of the PN spectra on the RGS background count rate

Β.			

RGS Background Count Rate - Galactic Coordinates

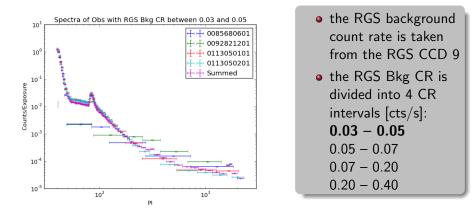

Check for the galactic distribution of the RGS background count rate

イロト イポト イヨト イヨト


3

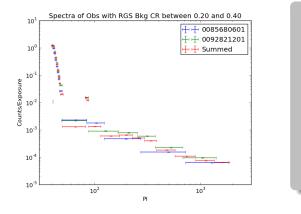
PN TM Blank Field	EPIC-BOC	13 / 15

RGS Background Count Rate - Galactic Coordinates

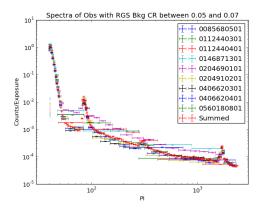

Check for the galactic distribution of the RGS background count rate

• the RGS background count rate is taken from the RGS CCD 9

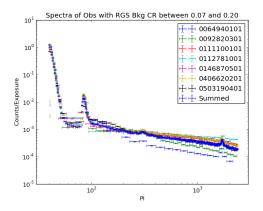
 the RGS Bkg CR is divided into 4 CR intervals [cts/s]:
 0.03 - 0.05
 0.05 - 0.07
 0.07 - 0.20
 0.20 - 0.40


 $\exists \rightarrow$

ightarrow take out two "non-blank" observations of the "Blank Fields"

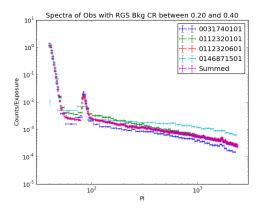

EPIC-BOC

14 / 15

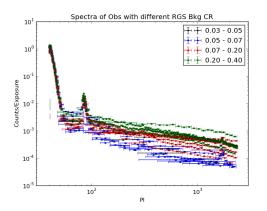

• the RGS back count rate is t from the RGS	aken
• the RGS Bkg divided into 4	
intervals [cts/	s]:
0.03 - 0.05	
0.05 – 0.07	
0.07 - 0.20	
0.20 - 0.40	

 \rightarrow take out two "non-blank" observations of the "Blank Fields"

• the RGS background count rate is taken from the RGS CCD 9


3 x 3

B. I

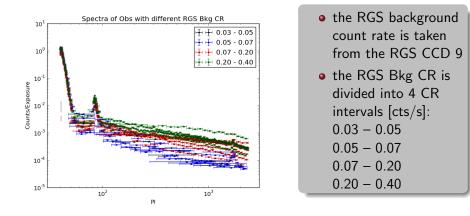

• the RGS background count rate is taken from the RGS CCD 9

	4	ㅁㅏ 《@ㅏ 《혼ㅏ 《혼ㅏ	E
Mück	PN TM Blank Field	EPIC-BOC	14 / 15

• the RGS background count rate is taken from the RGS CCD 9

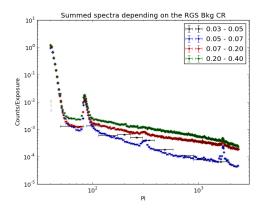
3. 3

B. Müc

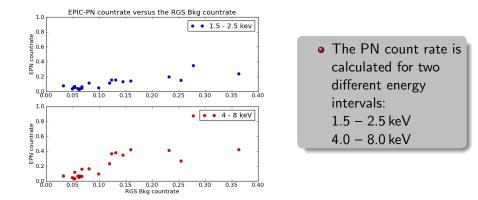

 the RGS background count rate is taken from the RGS CCD 9
 the RGS Bkg CR is

 the RGS Bkg CR is divided into 4 CR intervals [cts/s]:
 0.03 - 0.05
 0.05 - 0.07
 0.07 - 0.20
 0.20 - 0.40

イロト イポト イヨト イヨト


3

				_	2.10
ck	PN TM Blank Field	EPIC-BOO	2	14 /	/ 15


 \rightarrow Spectrum gets harder for higher RGS Bkg count rates

< 클 > < 클 > < 클 > EPIC-BOC

• the RGS background count rate is taken from the RGS CCD 9

The Blank Fields - RGS Dependence for Different Energies

Β.		

EPIC-BOC

Summary & Outlook

Summary

- scanned whole dataset of Timing Mode observations
- checked if they are really blank
- found source contamination and subtracted it
- found RGS Bkg CR dependence

Outlook

- create templates for different background conditions to extract the PN TM background
- normalisation of the templates with the 12–15 keV continuum or with the help of the copper line intensity
- testing on a sample of obscured X-ray binaries