Review of X-ray variability in black hole binaries

Adam Ingram Michiel van der Klis, Chris Done

The Extremes of Black Hole Accretion 9th June 2015

Truncated disk model

State changes from moving truncation radius ($R_q = GM/c^2$)

Gilfanov (2010)

Diffusion

Diffusion

ASTRONOMICAL INSTITUTE ANTON PANNEKOEK Propagating fluctuations

Lynden-Bell & Pringle (1974); Lyubarskii (1997); Arevalo & Uttley (2006)

Lynden-Bell & Pringle (1974); Lyubarskii (1997); Arevalo & Uttley (2006)

ASTRONOMICAL INSTITUTE ANTON PANNEKOEK

Frequency (Hz)

Freq-resolved spectra

Time lags

Time lags

11

ASTRONOMICAL INSTITUTE ANTON PANNEKOEK

QPO: Frame dragging

12

A spinning black hole **distorts** space and time The satellite's motion is **influenced** by the spin of the black hole

QPO: Frame dragging

Ingram, Done & Fragile (2009)

QPO: Frame dragging

Tell-tale sign of precession: a rocking iron line

14

Phase Resolving

Periodic function: constant phase difference

Periodic function: constant phase difference

Quasi-periodic function: changing phase difference

...but does the phase difference vary randomly or around a well defined mean?

17

Quasi-periodic function: changing phase difference

Split long light curve into many segments and measure the phase difference Ψ for each segment

Phase difference varies around a mean: there is an underlying waveform GRS 1915+105 (0.46 Hz QPO N° of segments (normalised) 0.5 0.5 2 0 1.5

Ingram & van der Klis (2015)

18

Phase difference varies around a mean: there is an underlying waveform GRS 1915+105 (0.46 Hz QPO) 6000 Counts/s 5000 4000 0.5 1.5 2 0 Phase (QPO cycles) Ingram & van der Klis (2015)

Phase resolving

Spectra for 4 snapshots of phase

Ingram & van der Klis (2015)

20

Spectral modeling

ASTRONOMICAL INSTITUTE ANTON PANNEKOEK

Ingram & van der Klis (2015)

Polarization

www.youtube.com/watch?v=ieZYYfCapJg&feature=youtu.be

Ingram et al (2015)

22

Conclusions

- Propagating fluctuations model consistent with power spectrum, linear rms-flux relation, time-lags, frequency-resolved spectra...
- Can now do propfluc analytically, so fitting lots of data is feasible (see Stefano Rapisarda's talk)
- If the QPO is due to precession, the iron line shape should change with QPO phase
- QPO phase-resolved spectroscopy is now possible (see Abi Stevens' talk)
- Need to look at more observations