Hemispherical Power Asymmetry in the Planck Data

Kristin Mikkelsen

Institute of Theoretical Astrophysics University of Oslo

on behalf of the Planck Collaboration

04.04.2013

• 2003: First-year WMAP data released

- 2003: First-year WMAP data released
- 2004: Eriksen et al. suggest existence of a hemispherical power asymmetry

- 2003: First-year WMAP data released
- 2004: Eriksen et al. suggest existence of a hemispherical power asymmetry
 - Consider only large angular scales, $\ell < 40$

- 2003: First-year WMAP data released
- 2004: Eriksen et al. suggest existence of a hemispherical power asymmetry
 - ullet Consider only large angular scales, $\ell < 40$
 - Find that Southern ecliptic hemisphere has more power than Northern

• 2005: Gordon et al. proposes dipolar modulation model

- 2005: Gordon et al. proposes dipolar modulation model
- 2007: Eriksen et al. fits this model to 3-year WMAP data.

- 2005: Gordon et al. proposes dipolar modulation model
- 2007: Eriksen et al. fits this model to 3-year WMAP data.
 - A=0.114

- 2005: Gordon et al. proposes dipolar modulation model
- 2007: Eriksen et al. fits this model to 3-year WMAP data.
 - A=0.114
 - $(I, b) = (225^{\circ}, -27^{\circ})$ Ecliptic: (long, lat) = $(80^{\circ}, -45^{\circ})$

ullet 2009: First high- ℓ asymmetry analysis by Hansen et al.

- ullet 2009: First high- ℓ asymmetry analysis by Hansen et al.
 - Considered $\ell \leq 600$

- ullet 2009: First high- ℓ asymmetry analysis by Hansen et al.
 - Considered $\ell \leq 600$
 - Independent estimates in bins of $\Delta \ell = 100$

- 2009: First high-ℓ asymmetry analysis by Hansen et al.
 - Considered $\ell < 600$
 - Independent estimates in bins of $\Delta \ell = 100$
 - Asymmetry observed in all ℓ bins

- 2009: First high- ℓ asymmetry analysis by Hansen et al.
 - Considered $\ell \leq 600$
 - Independent estimates in bins of $\Delta \ell = 100$
 - ullet Asymmetry observed in all ℓ bins
 - ullet High- ℓ direction consistent with previous low- ℓ results

- 2009: First high- ℓ asymmetry analysis by Hansen et al.
 - Considered $\ell \leq 600$
 - Independent estimates in bins of $\Delta \ell = 100$
 - ullet Asymmetry observed in all ℓ bins
 - ullet High- ℓ direction consistent with previous low- ℓ results

•
$$(I, b) = (226^{\circ}, -17^{\circ})$$

- 2009: First high- ℓ asymmetry analysis by Hansen et al.
 - Considered $\ell \leq 600$
 - Independent estimates in bins of $\Delta \ell = 100$
 - ullet Asymmetry observed in all ℓ bins
 - \bullet High- ℓ direction consistent with previous low- ℓ results

•
$$(l, b) = (226^{\circ}, -17^{\circ})$$

Aposteriori interpretation?

• 2013: First Planck data release

- 2013: First Planck data release
 - Different systematics

- 2013: First Planck data release
 - Different systematics
 - Higher angular resolution and sensitivity

- 2013: First Planck data release
 - Different systematics
 - Higher angular resolution and sensitivity
 - Larger effective multipole range

- 2013: First Planck data release
 - Different systematics
 - Higher angular resolution and sensitivity
 - Larger effective multipole range
 - Improved foreground subtraction

- 2013: First Planck data release
 - Different systematics
 - Higher angular resolution and sensitivity
 - Larger effective multipole range
 - Improved foreground subtraction
 - Larger sky fraction

Planck high-ℓ results

Power spectrum computed with $(I, b) = (224^{\circ}, 0^{\circ})$

Planck high-ℓ results

Parametric dipolar model results

Parametric dipolar model results

BipoSH results

BipoSH results

Dipole

$$A = 0.078$$

 $(I, b) = (227^{\circ}, -15^{\circ})$

BipoSH

$$A = 0.072$$

 $(I, b) = (219^{\circ}, -21^{\circ})$

• Power asymmetry confirmed by Planck

- Power asymmetry confirmed by Planck
 - Visible up to at least $\ell \leq 1500$

- Power asymmetry confirmed by Planck
 - Visible up to at least $\ell < 1500$
 - Statistically significant at $\sim 3\sigma$ at low ℓs

- Power asymmetry confirmed by Planck
 - Visible up to at least $\ell < 1500$
 - Statistically significant at $\sim 3\sigma$ at low ℓ s
 - Robust against systematics & foregrounds

- Power asymmetry confirmed by Planck
 - Visible up to at least $\ell < 1500$
 - Statistically significant at $\sim 3\sigma$ at low ℓ s
 - Robust against systematics & foregrounds
- Aposteriori interpretation greatly weakened

- Power asymmetry confirmed by Planck
 - Visible up to at least $\ell \leq 1500$
 - Statistically significant at $\sim 3\sigma$ at low ℓ s
 - Robust against systematics & foregrounds
- Aposteriori interpretation greatly weakened
 - Effect seen at ℓ s never before probed, with the same preferred direction as derived for $\ell < 40$

For further details see

Planck 2013 Results. XXIII. Isotropy and Statistics of the CMB

planck

Deutsches Zentrum für Luft- und Raumfahrt e.V.

