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The problem 

• We need to separate 
the CMB from the 
foregrounds 

The solution 

• We have 
observations at 
multiple frequencies 



The Bayesian approach 
• Assume we have data, d, that can be described by some parametric model, 

for instance 
 
where 

– s is the cosmological signal 
• Often assumed to be a Gaussian field with power spectrum Cl 

– f are foregrounds and/or systematics 
– n is instrumental noise 

 

• What most cosmological experiments (and data analyses) attempt to 
estimate is really the joint posterior in some form or other, 

 
– If we can find this, we also know all marginals, like P(Cl | d) and P(s | d), which 

describes the main cosmological results 
 

• But how do we compute this for modern data sets? 
– The observations consists of millions of data points 
– The models have millions of free parameters 
– The probability distributions are typically non-Gaussian and strongly coupled 



Gibbs sampling 
• Gibbs sampling: Sample from 

joint distribution by cycling 
through conditionals 
 

• Consider simple two-dimensional 
example, P(x, y) 

– Choose arbitrary initial point 
– Sample y from P(y|x) 
– Sample x from P(x|y) 
– Iterate 

• This is a special case of 
Metropolis-Hastings, and 
guaranteed to converge to the 
right answer 
 

• Why is this useful? 
– Because conditionals are often 

much simpler than the joint 
distribution 

– Complicated distributions can be 
build up by Gaussians, inverse 
gammas etc... 



Signal model 

CMB 

Low-frequency component 

Thermal dust 

CO 

Noise 

• We use the seven lowest Planck frequencies, from 30 to 353 GHz 
 

• A wide range of physical effects are relevant in this range 
– CMB, synchrotron, free-free, AME, haze (?), CO, thermal dust, SZ, CIB, 

extragalactic sources... 
 

• Adopt the following model for diffuse Galactic analysis: 

⇒  four amplitude parameters + three spectral parameters per pixel (+ Cl’s for Acmb) 



• Fitting seven free parameters to seven frequencies is difficult – need 
priors 
 

• Choose to impose priors on spectral parameters only 
 

– Low-frequency component: 
• Prior is only needed in low S/N regions ⇒  high Galactic latitudes 
• Synchrotron is dominant emission effect  ⇒ 

 

– Thermal dust component: 
• Priors informed by an initial MCMC run at high latitudes 

– Fitting only a single value for dust emissivity and temperature 
 

•                               ,  
– Dust temperature essentially fixed to 18K, but is allowed to float slightly to 

accommodate extremely high S/N objects in the Galactic center 

– CO component:    
• Assume constant line ratios, fitted to high S/N objects 
• h(217 GHz) = 0.6,   h(353 GHz) = 0.3, all others set to zero 

 

• Planck is strong enough to not require amplitude priors! 

Priors 



• For this model, the Gibbs sampling algorithm looks like: 
 
 
 
 
 
 
 
 

• Iterate this chain, remove the first few samples due to burn-in, and 
compute summary statistics 

 
• All that remains is to write down the individual conditionals 

The CMB Gibbs sampler 



• Amplitudes can be described by a multivariate Gaussian, and is given 
by a Wiener filter plus a fluctuation term, 

 

 
 

• Spectral parameters must be computed directly from the chi-square 

 
 

 
• Angular power spectra are given by an inverse Gamma distribution 
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Conditional distributions 



Astrophysical components from Planck 



Low- and high-resolution maps 



Low- and high-resolution maps 
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CMB CO Thermal dust 

40’ FWHM 
Nside=256 

 7’ FWHM 
Nside=2048 

 
            See Loris Colombo’s poster 



Validation by simulations 

• Largest bias is 3% for the CO component 
• Uncertainties for low-frequency and CO components accurate to 13% 
• Thermal dust uncertainty underestimates true error by a factor of 2 due to unmodelled 

CIB fluctuations 



Dominant components at 30GHz 
• Orange: AME 
• Cyan: Free-free 
• Purple: Synchrotron 

 
 
 
 

• Low-freq spectral index 

Validation by simulations 



Low-frequency power law index 
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Planck CMB sky samples 

Constrained realization in a 13% Galactic mask 



The low-l CMB power spectrum 

Defines the low-l Planck likelihood through a Blackwell-Rao estimator 
               See Eirik Gjerløw’s poster 



Summary and outlook 
• Major strengths of the Bayesian approach: 

– Relies on a well defined and transparent physical data model 
– Easy to impose priors whereever necessary 
– Seamless end-to-end propagation of both foreground and systematic 

uncertainties 
– Allows naturally for joint CMB and total intensity analysis 

 

• Commander-Ruler in the 2013 Planck data release: 
– Defines the low-l Planck likelihood up to l=49 
– Provides full-sky low-frequency component, CO and thermal dust maps, 

including spectral parameters 
 

• An extended low-frequency analysis of synchrotron, free-free and 
AME is expected to be released in the near future 
 

• Already working on high-l extensions for 2014 data release 
– Faster algorithms 
– Sampling of SZ clusters and (hopefully) CIB fluctuations 



The scientific results that we present today are a product of 
the Planck Collaboration, including individuals from more 
than 100 scientific institutes in Europe, the USA and Canada   
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