
Euclid ... digging the dark in the Planck Universe...

Y. Mellier on behalf of the Euclid Collaboration

Why is the Universe accelerating?

- What is *dark energy*: Dark Energy (DE), modified gravity, other?
- When did it start dominating the matter-energy content of the Universe?
- What impact on fundamental physics and post-Planck cosmology?

... questions beyond the scope of the Planck mission...

ESA/ESTEC, April 2-5, 2013

Euclid

47th ESLAB Symposium «The Universe as seen by Planck »

The ESA Euclid mission: scientific objectives

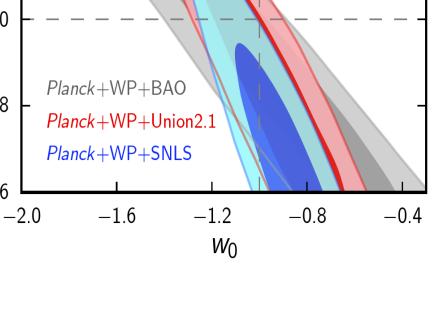
- Understand the origin of the Universe's accelerating expansion
- Derive properties/nature of dark energy (DE), test gravity (MG)
- Distinguish DE, MG, DM effects *decisively* by... :
 - Using at least 2 independent but complementary probes
 - Tracking their observational signatures on the
 - Geometry of the Universe:
 - Weak Lensing (WL), Galaxy Clustering (GC),
 - Cosmic history of structure formation:
 - WL, Redshift-Space Distortion, Clusters of Galaxies
 - <u>Controlling systematics</u> to a very high level of accuracy.

Distinguishing « decisively »

Parameterising our ignorance:

DE equation of state: $P/\rho = w$, and $w(a) = w_p + w_a(a_p-a)$ Growth rate of structure formation controlled by gravity: $f \sim \Omega^{\gamma}$; $\gamma = 0.55$ GR

... ?


- Either *w* is constant and its value is very very close to -1

 $W_{\rm X}$ still compatible with -1

The source of the accelerating expansion is the Cosmological ≥[™] Constant first introduced by Einstein. But what is its origin?

- But Planck data leave open that *w* may not be -1 or may vary with time ...

 \rightarrow Euclid can probe its effects and explore its very nature.

ESA/ESTEC, April 2-5, 2013

The Planck collaboration. Ade et al 2013

What do we know today, with Planck? If $w_x = P/\rho = cte$

1.6

8.0

0.0

-0.8

-1.6

Distinguishing « decisively »

Parameterising our ignorance:

DE equation of state: $P/\rho = w$, and $w(a) = w_p + w_a(a_p-a)$

Growth rate of structure formation controlled by gravity: $f \sim \Omega^{\gamma}$; $\gamma = 0.55$?

1. Nature of the apparent acceleration

- 1. Distinguish effects of Λ and dynamical dark energy \rightarrow Measure $w(a) \rightarrow$ slices in redshift
- 2. From Euclid data alone, get $FoM = 1/(\Delta w_a x \Delta w_p) > 400$ (with Planck $\Delta w_a < 5\% \Delta w_p < 1\%$)

 \rightarrow if data consistent with Λ , and **FoM > 400** then

 Λ favoured with odds of more than 100:1 = a "decisive" statistical evidence

- 2. Effects of gravity on cosmological scales
 - 1. Probe growth of structure \rightarrow slices in redshift ,
 - 2. Separately constrain the metrics potentials (Ψ , Φ) as function of both scale and time
 - 3. Distinguish effects of GR from MG models with very high confidence level (indicative):
 - \rightarrow absolute **1-\sigma precision of 0.02** on the growth index, γ , from Euclid data alone.

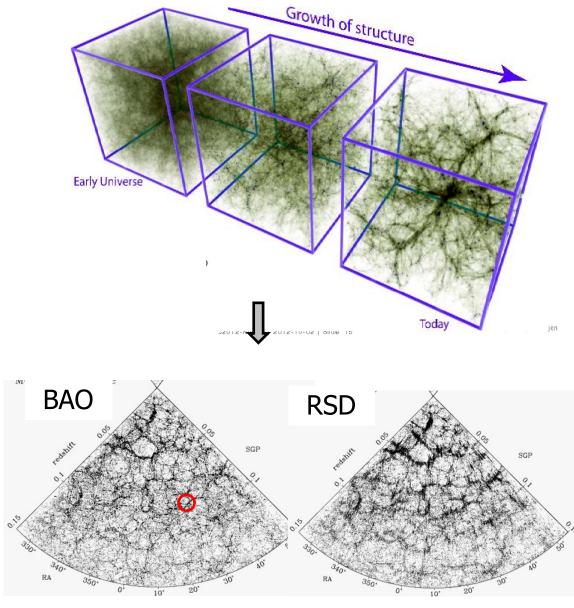
$(1. + 2.) \rightarrow$ primary objectives of Euclid \rightarrow how can Euclid achieve this?

Euclid

47th ESLAB Symposium «The Universe as seen by Planck »

cosmological probes

Euclid:


Galaxy Clustering: BAO + RSD

3-D position measurements of galaxies over 0<z<2

- Probes expansion rate of the Universe (BAO) and clustering history of galaxies induced by gravity (RSD); γ , H(z).
- Need high precision 3-D distribution of galaxies with spectroscopic redshifts.

Euclid:

50 million spectroscopic redshifts with 0.001 (1+z) accuracy over 15,000 deg²

Euclid

47th ESLAB Symposium «The Universe as seen by Planck »

Weak Lensing tomography and 3D lensing

cosmic shear over 0<z<2

$$\kappa_{eff} = \frac{3H_0^2\Omega_0}{2c^2} \int_0^\omega \frac{f_K\left(\omega - \omega'\right)f_K\left(\omega'\right)}{f_K\left(\omega\right)} \frac{\delta\left[f_K\left(\omega'\right)\boldsymbol{\theta};\omega'\right]}{a\left(\omega'\right)} \mathrm{d}\omega'$$

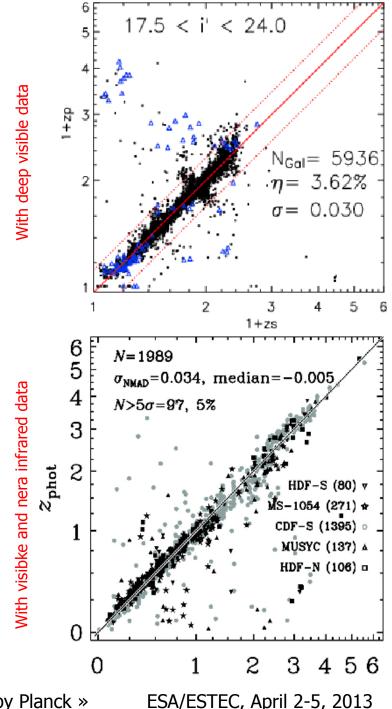
Probes distribution of matter (Dark +Luminous): expansion history, growth rate of structure formation.

 \rightarrow Shapes+distance of galaxies: shear amplitude, and bin the Universe into slices.

 \rightarrow Photo-z sufficient, but with optical and NIR data.

Euclid:

WL with 1.5 billion galaxies over 15,000 deg²



Euclid

47th ESLAB Symposium «The Universe as seen by Planck »

Redshifts measurements from "photometric redshifts"

- Redshifts for WL with only need an accuracy of 0.05(1+z) : primarily constrained by contamination of WL signal from intrinsic alignement
- Need to explore 0.7<z<2 \rightarrow need 4 visible band and 3 NIR band photometry
- → Euclid + ground based visible data (DES,Pan-STARRS, KIDS, HSC, LSST, CFHT, WHT, etc...)

47th ESLAB Symposium «The Universe as seen by Planck »

Clusters of galaxies

- Probe of peaks in density distribution
- Nb density of high mass, high redshift clusters very sensitive to
 - any primordial non-Gaussianity and
 - deviations from standard DE models
- Euclid data will get for free:
 - 60,000 clusters between 0.2 < z < 2, 10^4 of these will be at z > 1.
 - ~ 5000 giant gravitational arcs (\rightarrow SL+WL mass reconstruction)
 - \rightarrow very accurate masses for the whole sample of clusters (WL)
 - \rightarrow dark matter density profiles on scales >100 kpc

Synergy with Planck (=5th Euclid probe: ISW) and eROSITA

Euclid

mission implementation

Euclid:

Main requirements to design the mission

	Wide survey	Deep survey					
Survey							
size	15000 deg ²	40 deg ² N/S					
VIS imaging							
Depth	$n_{gal} > 30/arcmin^2$ $\rightarrow M_{AB} = 24.5$ $\rightarrow ~0.9$	M _{AB} = 26.5					
PSF size knowledge	σ[R ²]/R ² <10 ⁻³						
Multiplicative bias in shape	σ[m]<2x10 ⁻³						
Additive bias in shape	σ[c]<5x10 ⁻⁴						
Ellipticity RMS	σ[e]<2x10 ⁻⁴						
NIP photometry							
Depth	24 M _{AB}	26 M _{AB}					
NIS spectroscopy							
Flux limit (erg/cm ² /s)	3 10 ⁻¹⁶	5 10 ⁻¹⁷					
Completness	> 45 %	>99%					
Purity	>80%	>99%					
Confusion	2 rotations	>12 rotations					

WL and systematics $\gamma^{obs} = (1+m) \times \gamma^{true} + c$

 $C_l^{true} \approx \left[1 + 2\left\langle m \right\rangle\right] \times C_l^{obs} + < \mathsf{C}^2 >$

Small PSF, Knowledge of the PSF size Knowledge of distortion Method to correct distortion Method to correct Non-convolutive PSF Stability in time \rightarrow space telescope far best option! External visible photometry for photo-z accurary: 0.05x(1+z)

CC and avatamatics

Catastrophic z < 10%

- GC and systematics
- \rightarrow Understand selection \rightarrow Deep field

Completeness

Purity

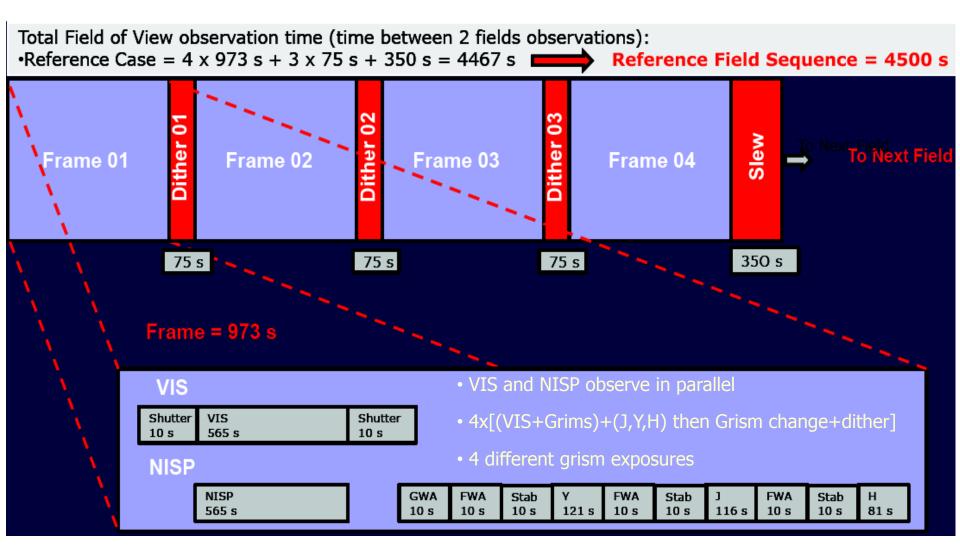
Euclid

47th ESLAB Symposium «The Universe as seen by Planck »

The Euclid Mission: baseline and options

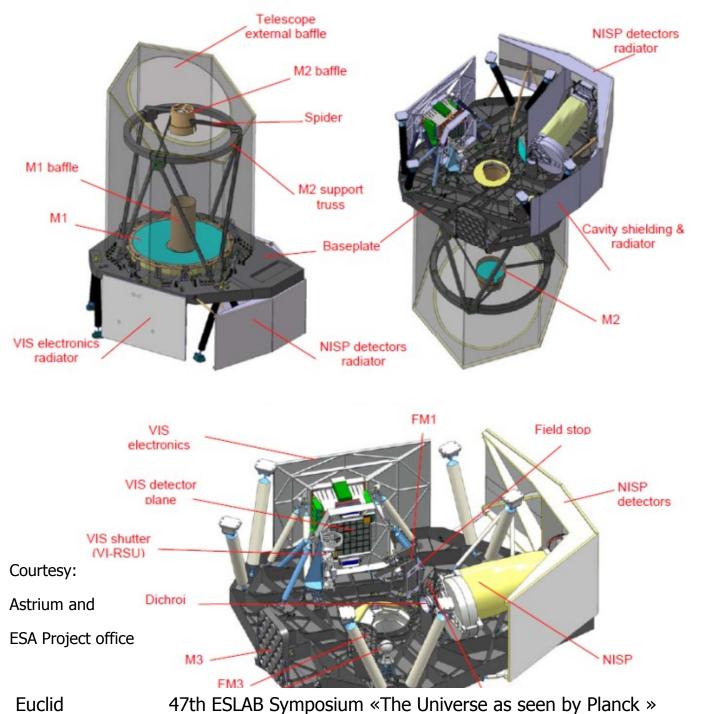
		SURVE	rs In ∼6 ye	ars					
	Area (deg2)	JORVE	Description						
Wide Survey	15,000 de	g ²	ith 4 dither pointings per step.						
Deep Survey	40 deg ²		In at least 2 patches of $> 10 \text{ deg}^2$ 2 magnitudes deeper than wide survey						
PAYLOAD									
Telescope	1.2 m Korsch, 3 mirror anastigmat, f=24.5 m								
Instrument	VIS	NISP							
Field-of-View	$0.787 \times 0.709 \text{ deg}^2$	$0.763 \times 0.722 \text{ deg}^2$							
Capability	Visual Imaging	NIR Imaging Photometry NIR Spectrosco							
Wavelength range	550–900 nm	Y (920-	J (1146-1372	Н (1372-	1100-2000 nm				
		1146nm),	nm)	2000nm)					
Sensitivity	24.5 mag	24 mag	24 mag	24 mag	3 10 ⁻¹⁶ erg cm-2 s-1				
	10σ extended source	5σ point	5σ point	5σ point	3.5σ unresolved line				
		source	source	source	flux				
	Shapes + Photo-z of $\underline{n} = 1.5 \times 10^9$ galaxies			z of <i>n</i> =5x10 ⁷ galaxies					

Possibility other surveys: SN and/or μ -lens surveys, Milky Way ?


Ref: Euclid RB Laureijs et al arXiv:1110.3193

Euclid

47th ESLAB Symposium «The Universe as seen by Planck »

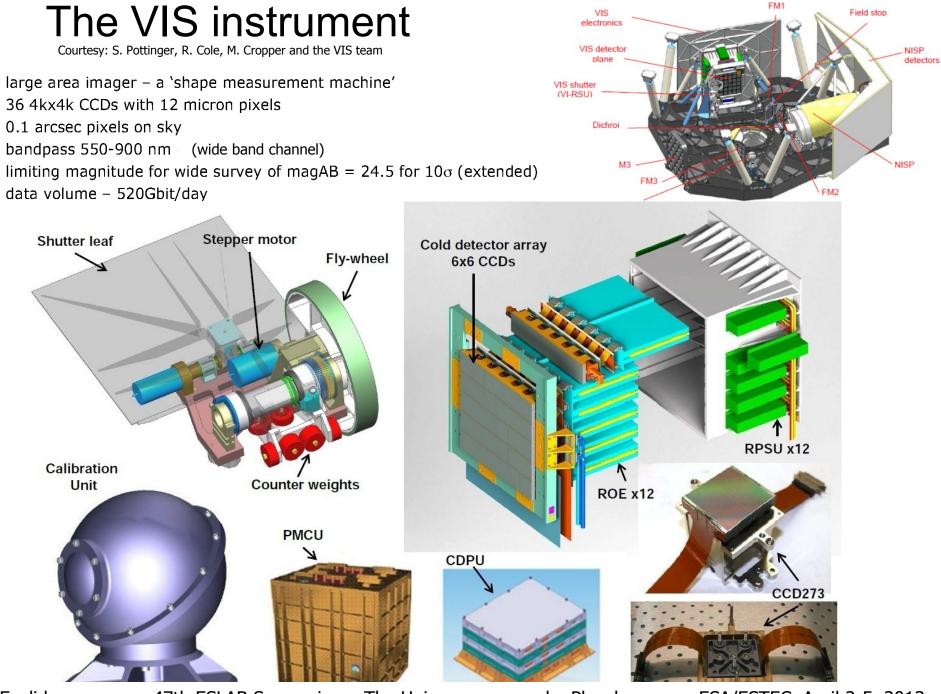

Obs. sequence: 4 (VIS+NISP) frames/pointing

Courtesy J. Amiaux, ESSWG

Data transfer to Earth: 4 hours/day

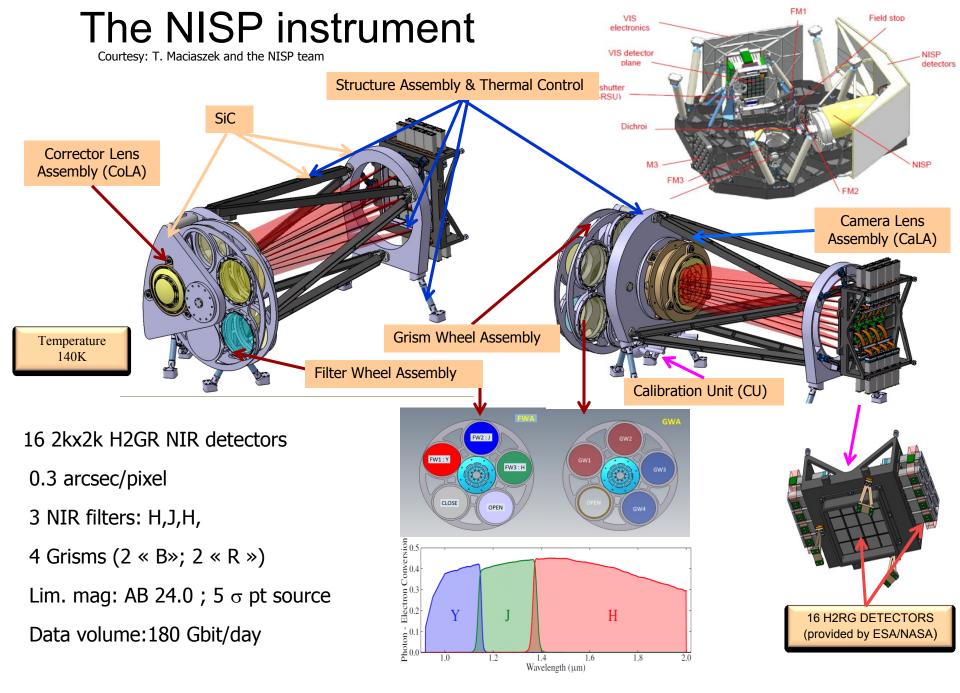
Euclid 47th ESLAB Symposium «The Universe as seen by Planck »

Euclid:


telescope and instruments

• Stabilisation:

Pointing error along the x,y axes= 25mas over a period 700 s.

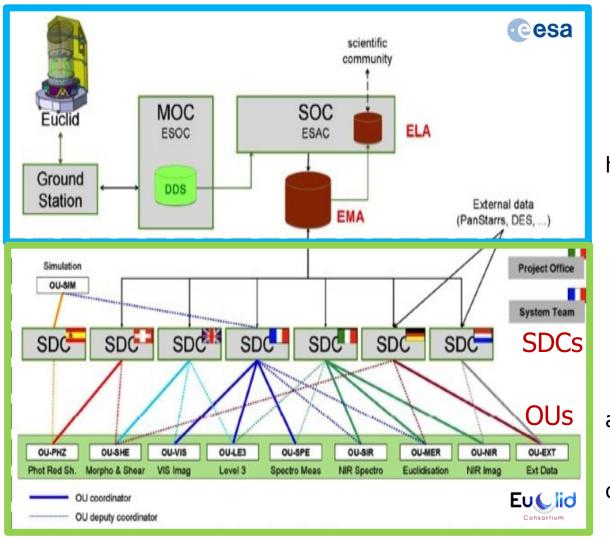

• FoV:

Common visible and NIR Fov = 0.54 deg^2

Euclid

47th ESLAB Symposium «The Universe as seen by Planck »

47th ESLAB Symposium «The Universe as seen by Planck »


ESA/ESTEC, April 2-5, 2013

Euclid

Science Ground Segment (SGS): production and data analysis

Courtesy: F. Pasian, M. Sauvage, EC SGS and ESAC

Complex organisation:

- 10 Organisation Units
- 7 Science Data Centers

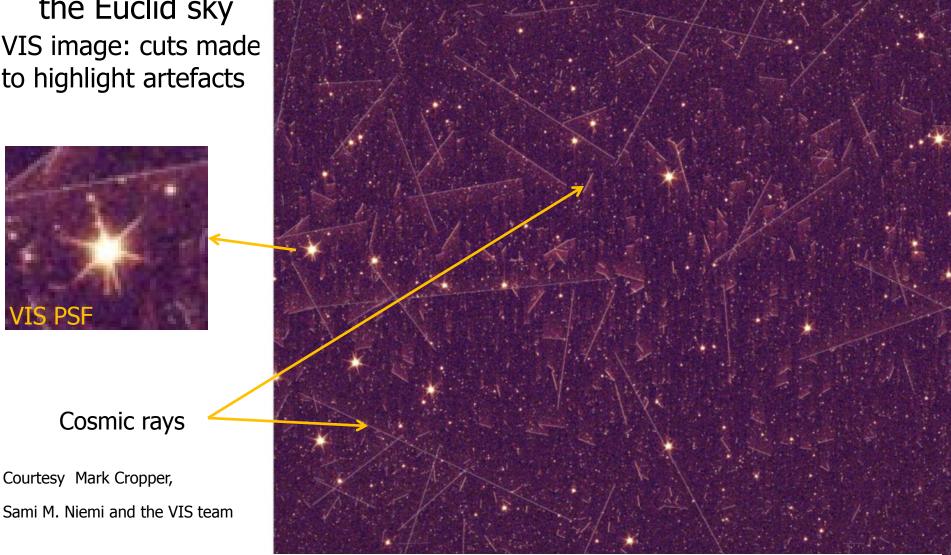
Data: huge volumes, heterogeneous data sets

- imagery and morphometry, photometry , spectroscopy
- data from ground and space
- 20-30 Pbytes
- > 10¹⁰ sources (>3-sigmas)

1st release Level-3: 26 months after the begining of the survey.

SGS = 50% of national agency contributions.

Euclid


47th ESLAB Symposium «The Universe as seen by Planck »

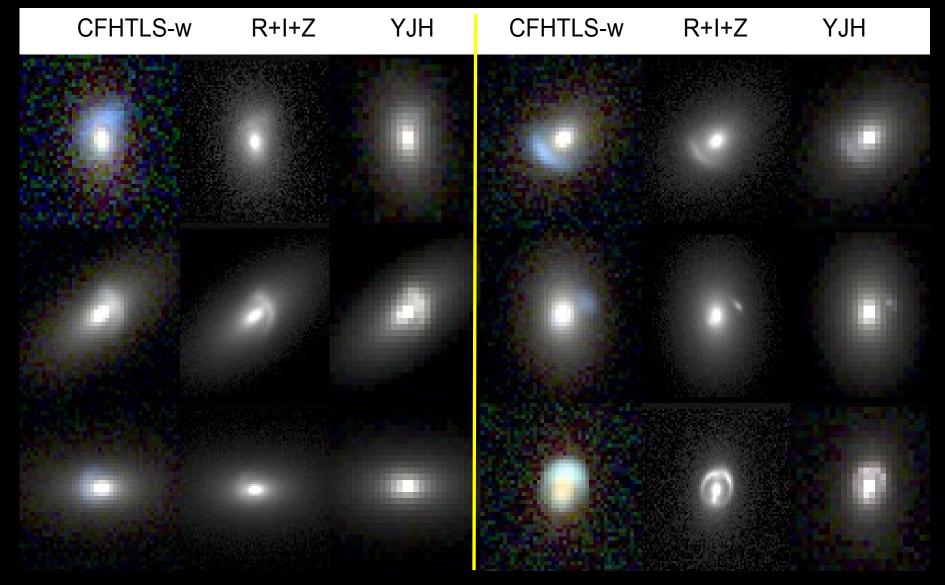
Euclid: performances

VIS performance: imaging

A 4kx4k view of the Euclid sky VIS image: cuts made to highlight artefacts

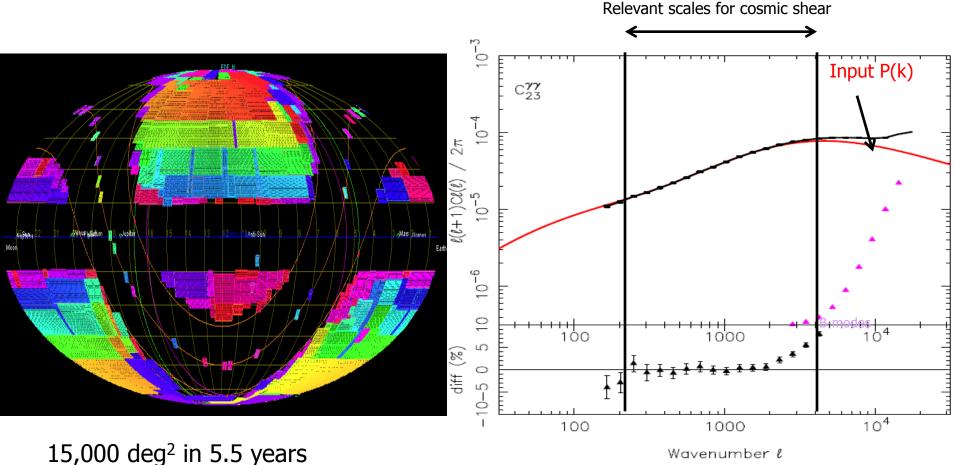
Euclid

47th ESLAB Symposium «The Universe as seen by Planck »


Simulation of M51 with VIS

SDSS @ z=0.1 Euclid @ z=0.1 Euclid @ z=0.7

Messier 51 galaxy at z~0.1 and 0.7:


Euclid will get the resolution of Sloan Digital Sky Survey but at z=1 instead of z=0.05. Euclid will be 3 magnitudes deeper \rightarrow Euclid Legacy = Super-Sloan Survey

Simulations and predictions of gravitational arcs and Einstein rings with Euclid

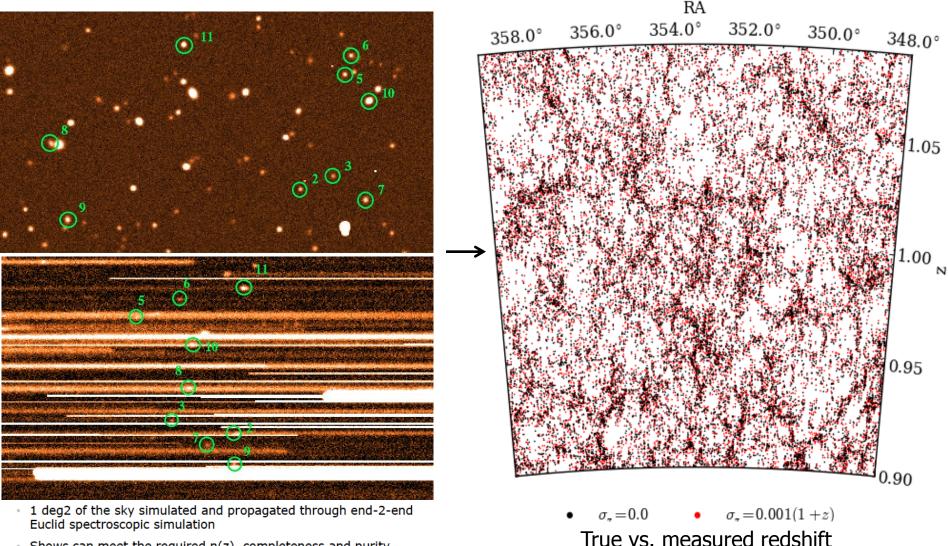
Euclid: DM reconstructed P(k): full wide survey

Laureijs et al 2011, Euclid RB arXiv:1110.3193 . Courtesy H. Hoekstra, T. Kitching and the WL SWG

Courtesy J. Amiaux, R. Scaramella, and the ESSWG

- Tomographic WL shear cross-power spectrum for 0.5 < z < 1.0 and 1.0 < z < 1.5 bins.

- Percentage difference [*expected* – *measured*] power spectrum: recovered to 1%.


47th ESLAB Symposium «The Universe as seen by Planck »

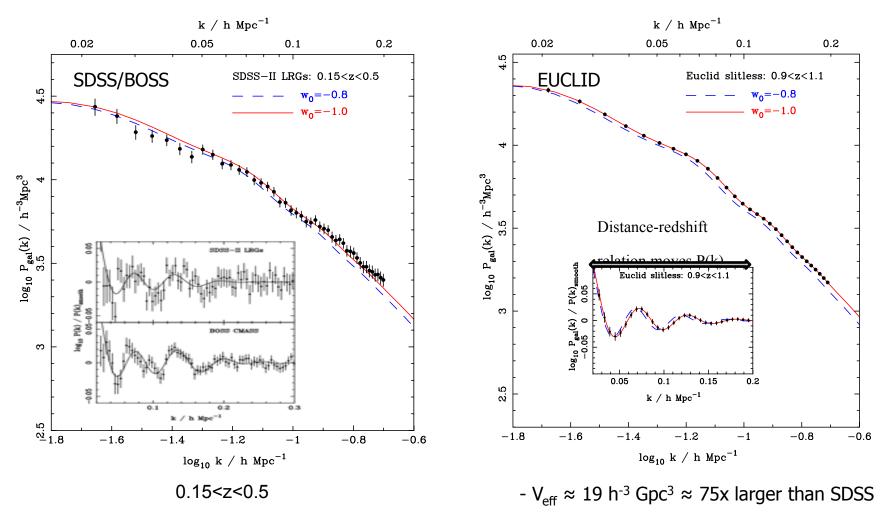
ESA/ESTEC, April 2-5, 2013

Euclid

NISP Performance: images/spectra/redshifts

Courtesy A. Ealet, K. Jahnke, B. Garilli, W. Percival, L. Guzzo and the NISP and SWG GC

Shows can meet the required n(z), completeness and purity

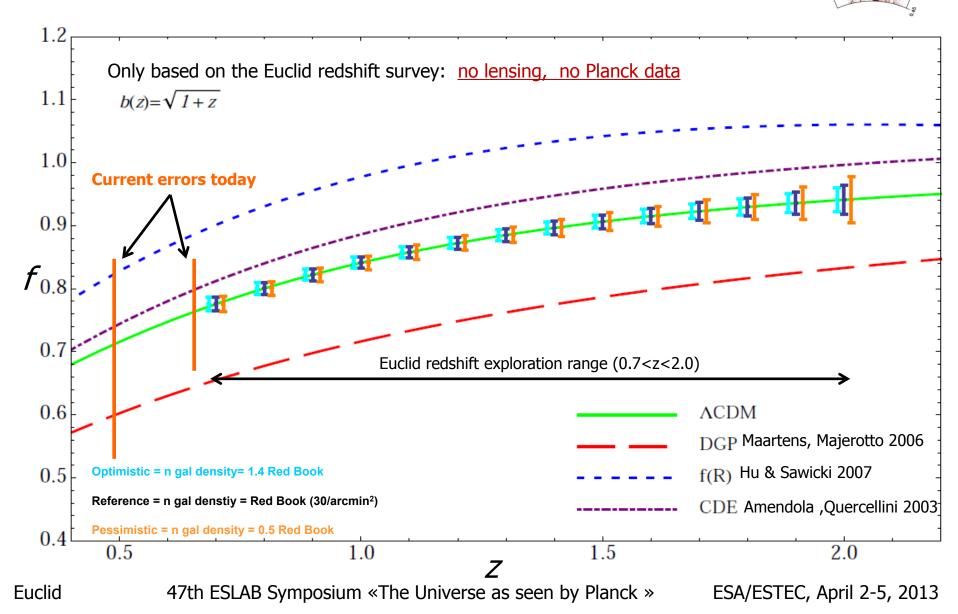

47th ESLAB Symposium «The Universe as seen by Planck »

ESA/ESTEC, April 2-5, 2013

Euclid

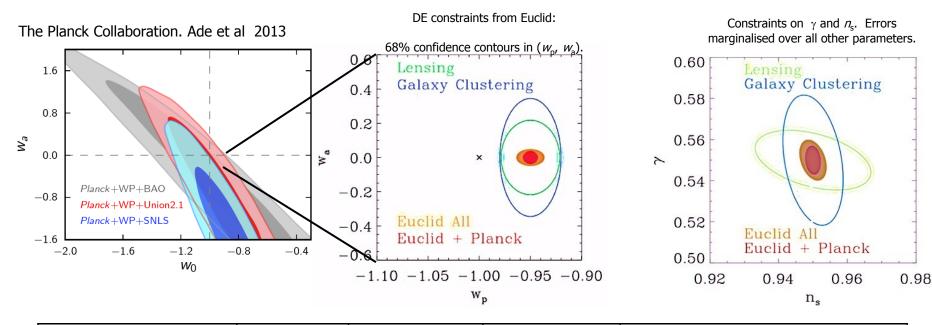
BAO: SDSS, BOSS vs Euclid

Courtesy W. Percivall, L. Guzzo and the Euclid GC SWG



- Percentage difference [*expected – measured*] power spectrum: recovered to 1%.

Euclid


Euclid GC: constraints on dark energy models

Amendola et al arXiv:1206.1225

Forecasts for the primary cosmology programme of the Euclid mission

	Modified Gravity	Dark Matter	Initial Conditions	Dark Energy		
Parameter	γ	<i>m _v /</i> eV	f _{NL}	w _p	W _a	FoM
Euclid primary (WL+GC)	0.010	0.027	5.5	0.015	0.150	430
Euclid All	0.009	0.020	2.0	0.013	0.048	1540
Euclid+Planck	0.007	0.019	2.0	0.007	0.035	4020
Current (2009)	0.200	0.580	100	0.100	1.500	~10
Improvement Factor	30	30	50	>10	>40	>400

Ref: Euclid RB arXiv:1110.3193

Assume systematic errors are under control

Euclid

47th ESLAB Symposium «The Universe as seen by Planck »

SLACS (~2010 - HST)

0	0)			1				
SDSS J1420+6019	SDSS J2321-0939	SDSS J1106+5228	SDSS J1029+0420	SDSS J1143-0144	SDSS J0955+0101	SDSS J0841+3824	SDSS J0044+0113	SDSS J1432+6317	SDSS J1451-0239
5055 10050 10410	SPEE 11012-6322		SDC5 11218-0830	SDCS 12238-0754			SPEC 12101-1422	CDEC 1110145322	SDSS 11531-0105
SDSS J0959+0410	SDSS J1032+5322	SDSS J1443+0304	SDSS J1218+0830	SDSS J2238-0754	SDSS J1538+5817	5055 J1134+6027	S0SS J2303+1422	SDSS J1103+5322	SDSS J1531-0105
SDSS J0912+0029	SDSS J1204+0358	SDSS J1153+4612	SDSS J2341+0000	SDSS J1403+0006	SDSS J0936+0913	S0SS J1023+4230	SDSS J0037-0942	SDSS J1402+6321	SDSS J0728+3835
SDSS J1627-0053	SDSS J1205+4910	SDSS J1142+1001	SDSS J0946+1006	S0SS J1251-0208	SDSS J0029-0055	SDSS J1636+4707	SDSS J2300+0022	SDSS J1250+0523	SDSS J0959+4416
SDSS J0956+5100	SDSS J0822+2652	SDSS J1621+3931	SDSS J1630+4520	SDSS J1112+0826	SDSS J0252+0039	SDSS J1020+1122	SDSS J1430+4105	SDSS J1436-0000	SDSS J0109+1500
	6	٢			5	C)	0		
SDSS J1416+5136	SDSS J1100+5329	SDSS J0737+3216	SDSS J0216-0813	SDSS 30935-0003	SDSS J0330-0020	SDSS J1525+3327	SDSS J0903+4116	SDSS J0008-0004	SDSS J0157-0056

SLACS: The Sloan Lens ACS Survey

www.SLACS.org

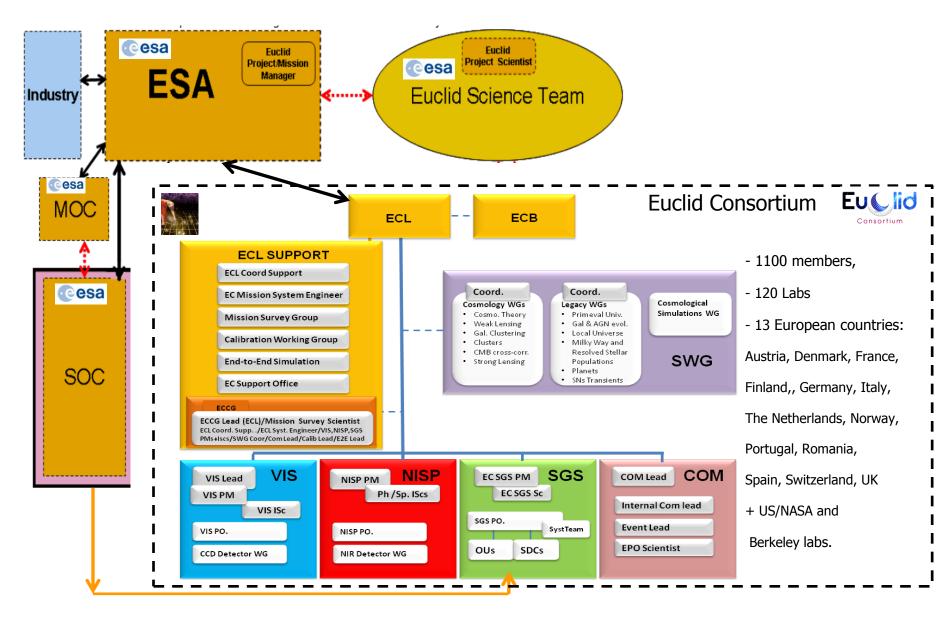
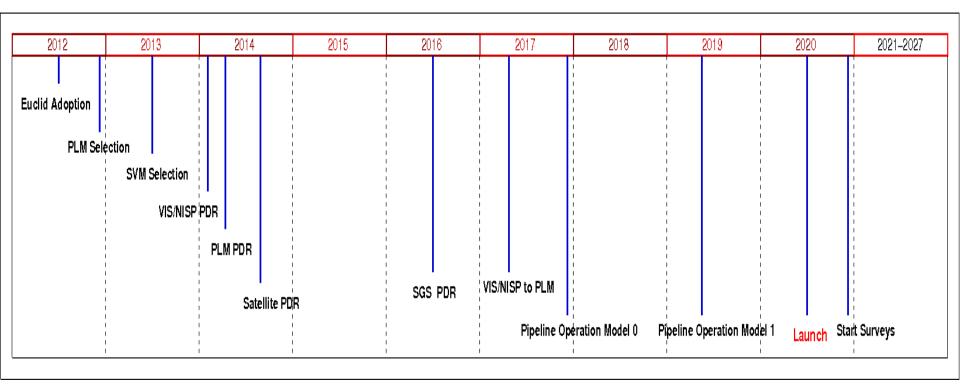

A. Bolton (U. Hawai'i IfA), L. Koopmans (Kapteyn), T. Treu (UCSB), R. Gavazzi (IAP Paris), L. Moustakas (JPL/Caltech), S. Burles (MIT)

Image credit: A. Bolton, for the SLACS team and NASA/ESA

Euclid: organisation

Euclid

47th ESLAB Symposium «The Universe as seen by Planck »


ESA/ESTEC, April 2-5, 2013

esa

Simple schedule

Launch date: Q1 2020

Euclid

47th ESLAB Symposium «The Universe as seen by Planck »

Summary

- ESA selected the only space mission designed to understand the origin of the accelerating expansion of the Universe;
- Euclid = 5 cosmological probes: WL, RSD, BAO, CL, ISW
- Put Europe at the forefront of one of the most fascinating and challenging question of modern physics and cosmology;
- Euclid Legacy = 12 billion sources, 50 million redshifts;
 - A mine of images and spectra for the community for several decades;
 - A reservoir of targets for JWST, GAIA, E-ELT, TMT, ALMA, VLT, SKA
 - Releases: +26 months then yearly (still debated)
- A formidable chance for young physicists and astrophysicists during the period 2020-2040

2020-2026: we hope that the Euclid mission will be as successful as the Planck mission!

Euclid

47th ESLAB Symposium «The Universe as seen by Planck »

Thank you and congratulations to the Planck team

Euclid

47th ESLAB Symposium «The Universe as seen by Planck »

esa

Challenges for Euclid

Shape measurements/systematics

Control of both multiplicative and additive biases

Photometric redshifts:

Ground based photometry in 4 bands : 15,000 deg² (i.e. north and south)

Numerical simulations with power spectrum to a 1% accuracy :

Resolution

Underlying physics: e.g. numerical simulations with baryons

Numerical simulation of a large number of DE, GR models

10³ to 10⁵ simulations to estimate covariance matrices

High order statistics:

Potentials of high order statistics for DE science + Systematics

Need Spectroscopics surveys to

Calibrate deep photo-z and

Understand BAO and RSD samples

Euclid 47th ESLAB Symposium «The Universe as seen by Planck »