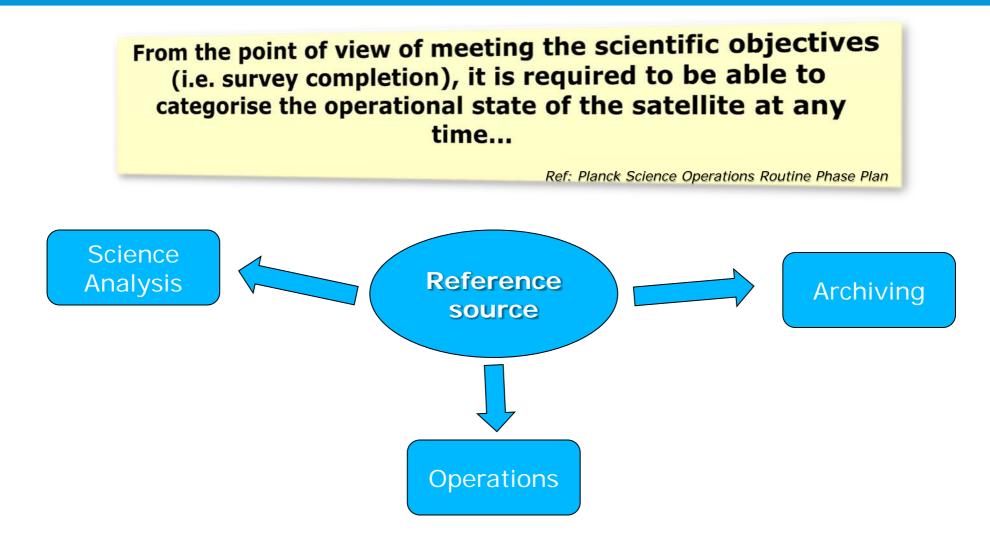


An Operational History for Space Missions: Application to Planck

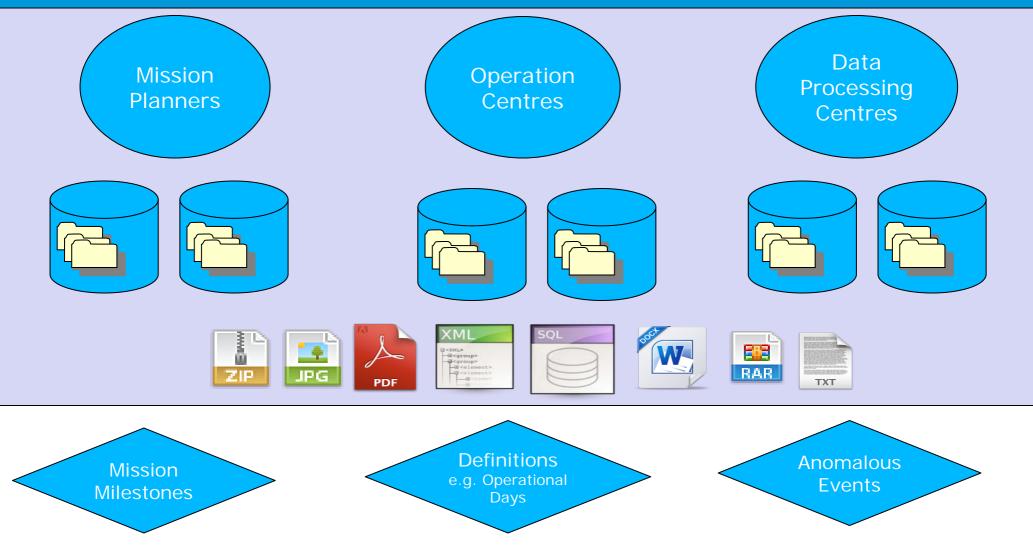
A. Macfarlane¹, R. Carr¹, M. Casale¹, X. Dupac¹, M. Freschi¹, J. Gallegos¹, T. Jagemann¹, R. Leonardi¹, L. Mendes¹, J. Tauber², D. Taylor¹, D. Texier¹

Sciops2013, ESAC.

12th September 2013



Motivation


- Difficulties of data collection
- Application to Planck
- Distribution
- Potential applications to other missions
- Lessons Learned / Summary

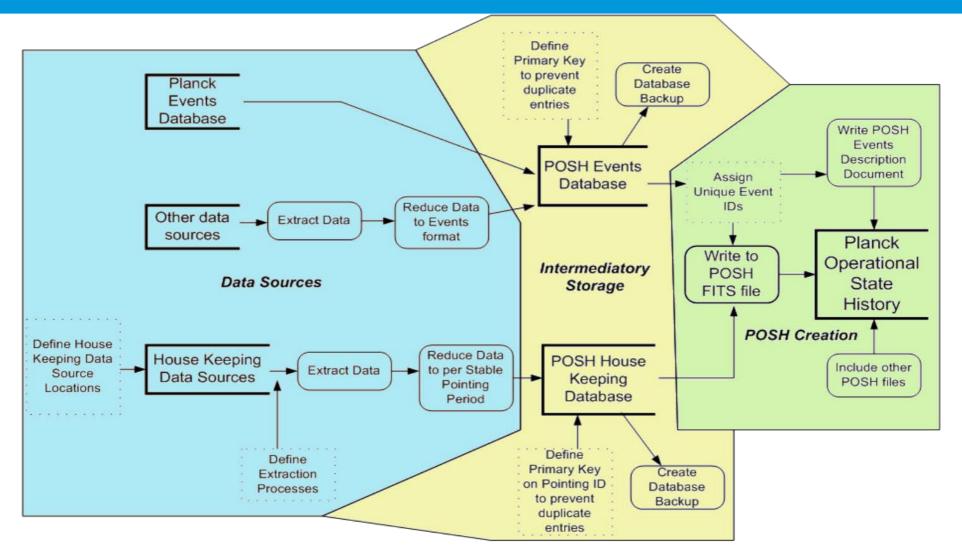
Operational Data Collection

An Operational History for Space Missions | A.J.Macfarlane et al. | Sciops2013 | ESAC | Pag. 4

European Space Agency

Application To Planck: Structure

Events


Event_ID	Start_Time_UTC	Start_Time	End_Time_UTC	End_Time	Title	EventType	SubType
Unique identification of event	Start of event as a String	Start of event as a number	End of event as a String	End of event as a number	Brief description of event	Number representing event type	Binary number representing the event's subtype
7-digit number iinnnn	yyyy-mm-dd hh:mm:ss	In seconds since launch of Planck	yyyy-mm-dd hh:mm:ss	In seconds since launch of Planck		2-digit number ii	8-bits 00000010

Instrument & Spacecraft states – House keeping summary

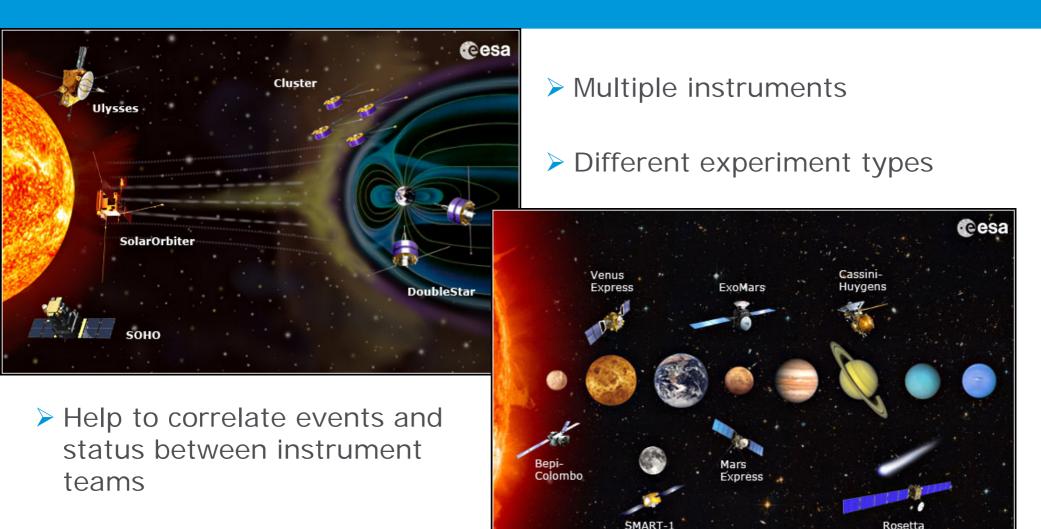
PREF	Start_Time_UTC	Start_Time	End_Time_UTC	End_Time	House_Keeping_Data
Pointing reference number	Start of stable pointing as a String	Start of stable pointing as a number	End of stable pointing as a String	End of stable pointing as a number	Columns of house keeping parameters
8-digit number	yyyy-mm-dd hh:mm:ss	In seconds since launch of Planck	yyyy-mm-dd hh:mm:ss	In seconds since launch of Planck	

Application To Planck: Pipeline

Application To Planck: Format

- Easily accessible
 - Easy to query
 - Easy to distribute
 - Easy to read
- FITS file format
 - Widely used format within the Astrophysical community
 - Contains multiple tables and metadata in one file
 - FITS Standard ensures universal readability
 - Free software available to read it
- > PDF
 - Containing detailed event descriptions
 - Preserves text formatting
 - Allows internal links

Potential Application To Other Missions: Survey Missions


Scanning / Continuous data acquirement

An Operational History for Space Missions | A.J.Macfarlane et al. | Sciops2013 | ESAC | Pag. 8

European Space Agency

Potential Application To Other Missions: Planetary / Orbital Missions

Potential Application To Other Missions: Observation Missions

An Operational History for Space Missions | A.J.Macfarlane et al. | Sciops2013 | ESAC | Pag. 10

European Space Agency

Lessons Learned / Summary

Plan early – before operations begin

- Can reduce development and maintenance costs
- > Can be included in operational pipelines
- > Allows operational history to be used to full potential
- Could be useful during planning stages of a mission

Planck Operational State History publicly released March 2013

Planck Legacy Archive (PLA) – <u>http://archives.esac.esa.int/pla</u>

Anomalous Data Acquisition Status	LFI Not Routine Operations
Calibration Sources	Mission Events
Cryo Chain Anomaly	OD Boundaries
Deviations to Nominal Scanning Law	Orbit Maintenance Manoeuvres
DTCP Period	Other Events
Environmental	RF Periods
HFI Instrument Anomaly	Satellite Special Activities
HFI Not Routine Operations	SCS Operations
Instrument Special Activities	Slew Events
LFI Instrument Anomaly	SVM Anomaly

House Keeping Parameters

Parameter (from AHFs/Orbit file)	Units	Parameter (from MUST/SREM calibrated data)	Units
Stable Pointing Reference		0.1K Bolometer Plate Temperature: HD271280	Kelvin
		1.6K Thermometer: HD497280	Kelvin
Start time of stable pointing	UTC	4K Box: HD494280	Kelvin
Number of seconds since Planck launch	Seconds	4K Shield Horn Entry Plate: HD281280	Kelvin
End time of stable pointing	UTC	30&44GHz reference load temperature: HD282280	Kelvin
Number of seconds since Planck launch	Seconds	50K V-Groove Final pre-cooling stage: SM022540	Kelvin
Duration of stable pointing	Seconds		
Executed Longitude at start of stable pointing from 0 to 360 degrees	Degrees	Flight Model 1 Focal Plane - Cold Plate Far Left: LM205332	Kelvin
Executed Latitude at start of stable pointing from -90 to 90 degrees	Degrees	Flight Model 1 Focal Plane - Cone Right Part Left: LM302332	Kelvin
Longitudinal error at start of stable pointing	Degrees	Flight Model 2 Focal Plane - Cone Left Part Left: LM206332	Kelvin
Latitudinal error at start of stable pointing	Degrees	Flight Model 2 Focal Plane - Right Bottom: LM301332	Kelvin
Average drift rate over a stable pointing	Arcsec/Hour	HFI JFET Box: HD497280	Kelvin
Distance from Sun at start of stable pointing	Kilometres	Primary Reflector: DM119187	Kelvin
X-Coord of Planck in Earth-Moon barycentric co-rotating frame	Kilometres	Secondary Reflector: DM122187	Kelvin
Y-Coord of Planck in Earth-Moon barycentric co-rotating frame	Kilometres	HFI Sorption Cooler Subsystem Liquid Vapour Hear eXchanger: SM018540	Kelvin
Z-Coord of Planck in Earth-Moon barycentric co-rotating frame	Kilometres	LFI Sorption Cooler Subsystem Liquid Vapour Hear eXchanger:	
Maximum anti-Sun angle over stable pointing from 0 to 180 degrees	Degrees	SM019540	Kelvin
Maximum anti-Earth angle over stable pointing from 0 to 180 degrees	Degrees	Temperature Stabilisation Assembly: SM020540	Kelvin
Maximum anti-Moon angle over stable pointing from 0 to 180 degrees	Degrees	Standard Radiation Environment Monitor Proton Detector	Kelvin
Maximum Principal Axis Tilt 1 from -100 to 100 arcmin	Arcmin	Standard Radiation Environment Monitor Electron Detector	Kelvin
Maximum Principal Axis Tilt 2 from -100 to 100 arcmin	Arcmin	Proton Counter TC1	MeV
Maximum nutation angle over stable pointing from 0 to 1000 arcmin	Arcmin	Electron Counter TC3	MeV
Maximum spin rate over stable pointing	Degrees/Second		