Development of a nanometric range precision Limb sensor for an Image Stabilization System for the SO/PHI instrument

Manuel Carmona¹, Tomás Carrasco¹, Thomas Berkefeld², José Bosch¹, Albert Casas¹, José María Gómez¹, Frank Heidecke², Atilà Herms¹, Manel López¹, Thorsten Maue², Eiji Nakai², David Roma¹, Josep Sabater¹, Thomas Scheiffelen², Wolfgang Schmidt², Michael Sigwarth², Dirk Soltau², Reiner Volkmer² Universitat de Barcelona (UB), Barcelona, Spain¹

Kiepenheuer-Institut für Sonnenphysik (KIS), Freiburg, Germany²

Introduction

The Solar Orbiter mission, developed by ESA, consists on a sun-observing satellite with different scientific instruments.

Solution

Quasi-analog solution:

Results

Noise analysis for x and y axis under lighted conditions:

One of these instruments is called PHI (Polarimetric and Helioseismic Imager).

One of the objectives of the PHI Instrument is to generate high precision spectropolarigrams. An ISS (Image Stability System) is used to achieve this precision.

 $\begin{cases} \Delta_y = \Delta_+ + \Delta_- = 2R(y_0 + z_0) + 2R(y_0 - z_0) = 4Ry_0 \\ \Delta_z = \Delta_+ - \Delta_- = 2R(y_0 + z_0) - 2R(y_0 - z_0) = 4Rz_0 \end{cases}$

 Δ_+ and Δ_- are the difference of signals between two counter-opposed quarters.

20 bits of resolution for the ADC is needed for our precision, but no space qualified ADC exists with such a performance.

Solution: Oversampling using Comb filters.

Sensor response with respect to the motors action:

Method

A solution based on a Limb sensor was first adopted for the ISS.

This solution consists of a four-quadrant photodiode. When sun image is off the center, different signals are measured at each quadrant.

Test setup

Test setup consists on a damped optical table, where the sensor board is positioned accurately by the control of two motors. A sun image is generated by an optical system. Finally, this system is inside a Faraday cage.

Measurement with decimated values:

The sensor is the SD380-23-21-251 from Advanced Photonix

Conclusions

A 20 bit image resolution has been achieved by using a 16bit resolution ADC and oversampling techniques. This provides a precision below the 80nm range.

This work has been possible thanks to the financial support of the project AYA2012-39636-C06-02, from the Economy and Competitiveness Department of Spain.