New Insights About EUV Brightenings In The  Quiet Sun Corona From The Extreme Ultraviolet Imager

(Solar Orbiter nugget #1 by Chris Nelson* & the EUI team)

 

Ever since their detection by Ellerman[1] in 1917 more than a century ago, localised (sub-Mm in diameter) transient (lifetimes of less than 10 minutes) brightenings have been actively studied by the solar physics community. Although such features were originally identified in active regions, where the strong magnetic fields and plasma velocities produce relatively large events, higher-resolution modern observatories have also been able to detect such events in the quiet Sun. Not only this, but localised brightenings are also observed across much of the electromagnetic spectrum, from visible light sampling the lower solar atmosphere to EUV observations of the corona. See [2] for an introductory review to some events within this extensive family of features.

One of the key early results of Solar Orbiter's[3] Extreme Ultraviolet Imager (EUI)[4] was identifying just how prevalent such localised transient brightenings are in the quiet Sun at EUV wavelengths (sampling temperatures of close to 1 MK). Berghmans et al.[5] used an automated algorithm to detect more than one thousand such events, colloquially referred to as 'campfires', in only a 245 s time-series collected using the 17.4 nm High-Resolution Imager (EUI/HRI) telescope. These EUV brightenings were shown to occur right down to the instrumental spatial resolution of around several hundred km, below what could have been routinely detected by the Solar Dynamics Observatory's Atmospheric Imaging Assembly (SDO/AIA)[6]. Using the distinct viewing angles between Solar Orbiter and SDO/AIA, Zhukov et al.[7] were able to show that these coronal events occurred at heights of between 1 Mm and 5 Mm above the photosphere, which is barely above the chromosphere. In the left-hand panel of Figure 1, we plot an image from a different EUI/HRI time-series, of around 34 minutes in length, sampled on 8 March 2022. The blue contours outline pixels which were identified to contain an EUV brightening in this dataset in at least one frame by the algorithm employed in [5], clearly displaying the spatial ubiquity of these features. The four panels on the right plot each cover around 5 Mm by 5 Mm on the horizontal scale, with the blue contours outlining clear examples of extremely small-scale EUV brightenings returned by the algorithm.

 

Figure 1: (Left panel) The EUI/HRI field-of-view from 8 March 2022. The blue contours outline pixels which contained EUV brightenings in at least one frame during this time-series. See also the movie at the end of this page. (Right panels) Four examples of zoomed in (approximately 5 Mm by 5Mm) regions containing different types of EUV brightenings. Specifically, EUV brightenings that are found within larger structures are plotted in the top row, whilst more isolated examples are plotted in the bottom row.

 

As with many transient events in the solar atmosphere, magnetic reconnection is a leading hypothesis as to the driver of EUV brightenings. To investigate this, Panesar et al.[8] examined line-of-sight photospheric magnetic field maps sampled by SDO's Helioseismic and Magnetic Imager (SDO/HMI)[9] finding that EUV brightenings often occurred co-spatial to bipoles, where high gradients in the local magnetic field can facilitate energetic energy release through reconnection. Kahil et al.[10] conducted a similar study using higher-resolution data from Solar Orbiter's Polarimetric and Helioseismic Imager (PHI)[11] finding that, potentially, around 70 % of localised EUV brightenings occurred co-spatial to bipoles. On top of this, both the numerical simulations of Chen et al.[12] and the magnetic field extrapolations of Barczynski et al.[13] have provided some evidence that magnetic reconnection high in the solar atmosphere could account for these events. In Figure 2, the evolution of the photospheric line-of-sight magnetic field (positive polarity in white and negative polarity in black) sampled by SDO/HMI co-spatial to two regions of EUV brightenings (identified by the red contours) detected in the dataset from 8 March 2022 are plotted. One of groupings of EUV brightenings is located above a unipolar region (top panels) whilst the other is found co-spatial with an isolated bipole (bottom panels).

 

Figure 2: Time-series displaying the evolution of the line-of-sight magnetic field (positive polarity in white and negative polarity in black) as inferred by SDO/HMI co-spatial to two regions of EUV brightening identified from the dataset sampled on 8 March 2022. The top row displays EUV brightenings which occur above a seemingly unipolar patch of magnetic field while the bottom row plots an EUV brightening which occurs above a localised bipole.

 

If EUV brightenings are indeed magnetic reconnection driven, then it is possible (or even likely) that they could occur at the same spatial locations as other localised transient events. One could envisage overlaps in the quiet Sun with, for example, Quiet-Sun Ellerman-like Brightenings[14] in the photosphere or Explosive Events[15] in the transition region. Studying SDO/AIA imaging data co-spatial to EUI intensity maps, both Panesar et al.[8] and Dolliou et al.[16] identified cooler plasma co-spatial to some EUV brightenings. Preliminary results obtained through analysis of transition region spectra sampled by both the Interface Region Imaging Spectrograph (IRIS)[17] and Spectral Imaging of the Coronal Environment (SPICE)[18] have also supported the assertion that lower temperature components may also be present. More detailed statistical analysis of spectra sampled at the location of EUV brightenings will be required in the future to better understand any potential connections.

Despite this progress, it is still unclear what proportion of automatically detected EUV brightenings, if any, are driven by magnetic reconnection. Some EUV brightenings identified automatically could instead, for example, be evidence of plasma cooling through the EUI/HRI temperature response window during instances of catastrophic cooling in coronal loops. EUI data (see [19] for an overview of some data) sampled in coordination with other instruments (such as IRIS and SPICE) will play a vital role in assessing this in the near future. What role, if any, EUV brightenings play in accounting for the big problems in solar physics, namely coronal heating and the driving of the solar wind, should then become clearer.

 

Affiliations:

*European Space Agency, ESTEC, Noordwijk, The Netherlands

 

Acknowledgments:

The EUI instrument was built by CSL, IAS, MPS, MSSL/UCL, PMOD/WRC, ROB, LCF/IO with funding from the Belgian Federal Science Policy Office (BELSPO/PRODEX PEA C4000134088); the Centre National d’Etudes Spatiales (CNES); the UK Space Agency (UKSA); the Bundesministerium für Wirtschaft und Energie (BMWi) through the Deutsches Zentrum für Luft- und Raumfahrt (DLR); and the Swiss Space Office (SSO).

 

References:

[1] Ellerman, F.: 1917, ApJ, 46, 298

[2] Young, P.R.; Tian, H.; Peter. H.; et al.: 2018, SSR, 214, 120

[3] Müller, D.; St. Cyr, O. C.; Zouganelis, I.; et al.: 2020, A&A, 642, 1

[4] Rochus, P.; Auchère, F.; Berghmans, D.; et al.: 2020, A&A, 642, 8

[5] Berghmans, D.; Auchère, F.; Long, D.M.; et al.: 2021, A&A, 656, 4

[6] Lemen, J.R.; Title, A.M.; Akin, D.J.; et al.: 2012, Sol. Phys., 275, 17

[7] Zhukov, A.N.; Mierla, M.; Auchère, F.; et al.: 2021, A&A, 656, 35

[8] Panesar, N.K.; Tiwari, S.K.; Berghmans, D.; et al.: 2021, ApJ, 921, 20

[9] Scherrer, P.H.; Schou, J.; Bush, R.I.; et al.: 2012, Sol. Phys., 275, 207

[10] Kahil, F.; Hirzberger, J.; Solanki, S.K.; et al.: 2022, A&A, 660, 143

[11] Solanki, S.K.; del Toro Iniesta, J.C.; Woch, J.; et al.: 2020, A&A, 642, 11

[12] Chen, Y.; Przybylski, D.; Peter, H.; et al.: 2021, A&A, 656, 7

[13] Barczynski, K.; Meyer, K.A.; Harra, L.K.; et al.: 2022, Sol. Phys., 297, 141 

[14] Rouppe van der Voort, L.H.M.; Rutten, R.J.; Vissers, G.J.M.: 2016, A&A, 592, 100

[15] Brueckner, G.E. & Bartoe, J.D.F.: 1983, ApJ, 272, 329

[16] Dolliou, A.; Parenti, S.; Auchère, F.; et al.: 2023, A&A, 671, 64

[17] De Pontieu, B.; Title, A.M.; Lemen, J.R.; et al.: 2014, Sol. Phys., 289, 2733

[18] SPICE Consortium; Anderson, M.; Appourchaux, T.; et al.: 2020, A&A, 642, 14

[19] Berghmans, D.; Antolin, P.; Auchère, F.; et al.: 2023, ArXiv

 

Movie for Figure 1

 

Nuggets archive

2024

28/08/2024: Coordinated observations with the Swedish 1m Solar Telescope and Solar Orbiter

21/08/2024: Multi-source connectivity drives heliospheric solar wind variability

14/08/2024: Composition Mosaics from March 2022

26/06/2024: Quantifying the diffusion of suprathermal electrons by whistler waves between 0.2 and 1 AU with Solar Orbiter and Parker Solar Probe

19/06/2024: Coordinated Coronal and Heliospheric Observations During the 2024 Total Solar Eclipse 

05/06/2024: Solar Orbiter in-situ observations of electron beam – Langmuir wave interactions and how they modify electron spectra

29/05/2024: SoloHI's viewpoint advantage: Tracking the first major geo-effective coronal mass ejection of the current solar cycle

22/05/2024: Real time space weather prediction with Solar Orbiter

15/05/2024: Hard X ray and microwave pulsations: a signature of the flare energy release process

01/02/2024: Relativistic electrons accelerated by an interplanetary shock wave

18/01/2024: Deformations in the velocity distribution functions of protons and alpha particles observed by Solar Orbiter in the inner heliosphere

11/01/2024: Modelling Two Consecutive Energetic Storm Particle Events observed by Solar Orbiter

 

2023

14/12/2023: Understanding STIX hard X-ray source motions using field extrapolations

07/12/2023: Multi-Spacecraft Observations of the 2022 March 25 CME and EUV Wave: An Analysis of their Propagation and Interrelation

16/11/2023: EUI data reveal a "steady" mode of coronal heating

09/11/2023: A new solution to the ambiguity problem

02/11/2023: Solar Orbiter and Parker Solar Probe jointly take a step forward in understanding coronal heating

25/10/2023: Observations of mini coronal dimmings caused by small-scale eruptions in the quiet Sun

18/10/2023: Fleeting small-scale surface magnetic fields build the quiet-Sun corona

11/10/2023: Unusually long path length for a nearly scatter free solar particle event observed by Solar Orbiter at 0.43 au

27/09/2023: Solar Orbiter reveals non-field-aligned solar wind proton beams and its role in wave growth activities

20/09/2023: Polarisation of decayless kink oscillations of solar coronal loops

23/08/2023: A sharp EUI and SPICE look into the EUV variability and fine-scale structure associated with coronal rain

02/08/2023: Solar Flare Hard Xrays from the anchor points of an eruptive filament

28/06/2023: 3He-rich solar energetic particle events observed close to the Sun on Solar Orbiter

14/06/2023: Observational Evidence of S-web Source of Slow Solar Wind

31/05/2023: An interesting interplanetary shock

24/05/2023: High-resolution imaging of coronal mass ejections from SoloHI

17/05/2023: Direct assessment of far-side helioseismology using SO/PHI magnetograms

10/05/2023: Measuring the nascent solar wind outflow velocities via the doppler dimming technique

26/04/2023: Imaging and spectroscopic observations of EUV brightenings using SPICE and EUI on board Solar Orbiter

19/04/2023: Hot X-ray onset observations in solar flares with Solar Orbiter/STIX

12/04/2023: Multi-scale structure and composition of ICME prominence material from the Solar Wind Analyser suite

22/03/2023: Langmuir waves associated with magnetic holes in the solar wind

15/03/2023: Radial dependence of the peak intensity of solar energetic electron events in the inner heliosphere

08/03/2023: New insights about EUV brightenings in the quiet sun corona from the Extreme Ultraviolet Imager