Back 2022-06-13 Where do the stars go? Where do they come from?

Where do the stars go? Where do they come from?

Wavy proper motion patterns and the rotation of the Milky Way disk

 

In the image below we see a colour map of the entire night sky constructed from the Gaia measurements of the positions of stars in the sky, as well as their brightness and colour.

 


Figure 1: Colour map of the night sky constructed from Gaia data. Credits: ESA/Gaia/DPAC - CC BY-SA 3.0 IGO.


The bright band running horizontally across the middle of the image is the Milky Way which can be seen at night if you are in a dark place. This band is caused by our view from inside our home galaxy, also called the Milky Way. As explained in this item on the anatomy of the Milky Way, our galaxy consists of a flat disk with spiral arms and a thicker central part, consisting of the bar and the bulge. The halo of our galaxy surrounds the disk.


Because of our position inside the Milky Way we see our galaxy’s disk edge-on and this leads to a concentration of stars along the bright band in the Gaia sky map. This bright band also coincides with the ‘equator’ of our sky coordinate system, in which we indicate directions to stars as their ‘galactic longitude’, which runs along the Milky Way band as indicated in the image below, and ‘galactic latitude’, which runs perpendicular to the Milky Way band (basically the same as geographic longitude and latitude used to locate places on earth). The direction to the centre of the Milky Way is at longitude 0 degrees and latitude 0 degrees.


Figure 2: Colour map of the night sky with the Milky Way band and Galactic longitude directions highlighted. l=0° indicates the direction to the centre of ourgalaxy. Credits: ESA/Gaia/DPAC - CC BY-SA 3.0 IGO.


Gaia measures not only the positions of stars in the sky but also their motions, both across the sky, ‘proper motion’, and along the line of sight to the stars, ‘radial velocity’. The motions of stars have been studied since the 19th century in order to gain a better understanding of the galaxy we inhabit, the Milky Way. It was noted in the early 20th century by among others, the astronomers Oort and Lindblad, that when one plots the proper motions of the stars in the Galactic longitude direction (i.e. in the direction parallel to the line in the image above) the motions show a wavy pattern, with the proper motion values going up and down for stars at different longitudes. This is also very clearly seen in the figure below which shows the Gaia proper motions in Galactic longitude (μ) as a function of longitude for a sample of young B-type (hot and blue) stars in the disk of the Milky Way. This sample is described in the paper "Gaia Data Release 3: A Golden Sample of Astrophysical Parameters" by Gaia Collaboration, Creevey et al. (2022).


Figure 3. Proper motions along the Galactic longitude direction versus Galactic longitude for a sample of young B-type stars. Colours indicate the number of stars per interval of longitude and proper motion, with lighter colours indicating more stars. Credits: ESA/Gaia/DPAC - CC BY-SA 3.0 IGO.


Why do the stars’ proper motions show this wavy pattern? This is explained in the video below and in the text that follows.


Visualisation 1. This video explains the origin of the wavy pattern in the plot of proper motion versus Galactic longitude. Credits: ESA/Gaia/DPAC - CC BY-SA 3.0 IGO. Full acknowledgements for this video, see bottom of the page.


The rotation of the Milky Way disk

All stars in the Milky Way move along orbits around the centre of our galaxy (like planets in the solar system orbit the Sun), where the orbits are dictated by the collective gravitational force field of the stars, gas, and dark matter in the Galaxy. This results in a rotation of the Milky Way disk as a whole. This is schematically indicated in the image below, showing the position of the Sun in the Milky Way disk (as seen from above) and the sense of rotation of the disk as indicated by the arrow.

 

Figure 4. Artist’s impression of the Milky Way as seen from above the disk, with the position of the Sun indicated by the orange dot. The arrow shows the sense of rotation of the Milky Way disk. Credits: ESA/Gaia/DPAC - CC BY-SA 3.0 IGO, artist’s impression by Stefan Payne-Wardenaar/MPIA


The works by Oort, Lindblad, and others in the early 20th century hypothesised that the wavy pattern in the proper motions of the stars is a consequence of the specific way the disk rotates. As illustrated in the video, the Milky Way disk does not rotate like a solid object (for example a frisbee or discus spinning around its axis). Instead the stars in the Milky Way go around the centre at different speeds, completing an orbit faster near the centre and slower in the outer parts of the disk. This is called `differential rotation’. The effect is that stars orbiting closer to the Milky Way centre than the Sun, will ‘overtake’ the Sun over the course of time, while stars orbiting further out will lag behind the Sun in their orbits. The changing relative positions of the stars then lead to motions of stars across the sky.

The video includes a very simple model of the orbits of stars in the Milky Way disk to show what the value of their proper motion is as seen from the sun. This is indicated by a colour coding as shown in the still from the video below.

 

Figure 5. Model of stars in the Milky Way disk where the colour coding indicates the proper motions of the stars as seen from the Sun (orange dot). Credits: ESA/Gaia/DPAC - CC BY-SA 3.0 IGO.

 

If we now focus on a ring of stars around the Sun (next figure) we notice how the light and dark colours alternate along the ring. That is, the value of the proper motion varies periodically along the ring and the locations along the ring correspond to the directions to the stars (Galactic longitude).

 

Figure 6. Model of stars in the Milky Way disk where the colour coding indicates the proper motions of the stars as seen from the Sun (orange dot). Here we focus on a ring of stars which are all located at more or less the same distance from the Sun. Notice how the colours (proper motions) change regularly along the ring, going from dark to light and back. Credits: ESA/Gaia/DPAC - CC BY-SA 3.0 IGO.


If we then plot the proper motions of the stars in this ring versus longitude (figure below) we see how the wavy pattern emerges from this simple model of the rotation of the Milky Way disk. You can compare this to the actual data shown in the image above.

 

Figure 7. Directions to the stars (Galactic longitude) are indicated along the ring in the bottom half of this image. The top half shows a plot of the proper motion value vs Galactic longitude with the same colour coding. A clear wavy pattern results. Credits: ESA/Gaia/DPAC - CC BY-SA 3.0 IGO.

 

What do astronomers learn from this?

In the simple Milky Way models used in the video above the stars all go around the Milky Way disk in circles but with different speeds V which depend on the distance R from the star to the centre of the Milky Way. The plot below shows how the speed V varies with distance R. This is the so-called ‘rotation curve’ for the Milky Way disk.

Figure 8. Rotation curve used for the Milky Way disk model in the video. The rotation speed at the location of the Sun is indicated with the orange dot. Credits: ESA/Gaia/DPAC - CC BY-SA 3.0 IGO.


Traditionally astronomers have analysed the wavy proper motion pattern for stars located relatively close to the Sun. This allows the derivation of the rotation speed at the location of the Sun and whether the rotation curve decreases in value (as in the above plot), stays flat, or increases in value. The shape of the rotation curve contains information on the amount of mass in the Milky Way within distance R. The shape as shown in the plot above is a very strong indication of the presence of dark matter. To explain the high speeds of the stars at large distances more matter is needed than can be accounted for by the visible stars, gas, and dust.

 

Why examine B-type stars?

The wavy pattern seen in the Gaia proper motions is shown for B-type stars above. These types of stars are hot, blue, and young (meaning up to about 100 million years old). These types of stars are often used to study the rotation curve because they have not yet developed the large random motions seen for older stars. The next plot shows an example of the proper motion versus longitude for G-type stars (stars like the sun, so billions of years old). Notice how the wavy pattern is still visible but much fuzzier due to the random motions of the G stars with respect to the average circular motions.

 

Figure 9. Proper motions along the Galactic longitude direction versus Galactic longitude for a sample of old G-type stars. Credits: ESA/Gaia/DPAC - CC BY-SA 3.0 IGO.


How Gaia changes the picture

With Gaia we now have access to precise proper motion, radial velocity, and parallax measurements over a much larger volume in the Milky Way disk. This makes it possible to directly measure the rotation curve for the stars by simply calculating their 3D positions and motions. Hence the analysis of the wavy pattern is not strictly needed anymore. This is illustrated beautifully in the paper "Gaia Data Release 3: Mapping the asymmetric disc of the Milky Way" by Gaia Collaboration, Drimmel, et al. (2022). The paper includes a figure showing a directly measured rotation curve for giant stars which can be seen over very large distances in the Milky Way. Averaging the 3D motions of many of these giants then reveals the rotation curve despite the large random motions (the giants are much older than B-type stars).

 

Alternative ways to measure the rotation curve

The space between the stars in the Milky Way disk is filled with tenuous gas clouds which also contain a fraction of dust. These gas clouds can be observed in radio wavelengths and they can be seen over the full extent of the Milky Way disk. The radio measurements provide the radial velocity of the gas clouds (but not the proper motions). Because the clouds also orbit around the Milky Way centre according to the rotation curve, the radial velocities will also show a wavy pattern. This can be used to measure the rotation curve from the motions of these gas clouds. This is illustrated in the paper "Gaia Data Release 3: Exploring and mapping the diffuse interstellar band at 862 nm" by Gaia Collaboration, Schultheis et al. (2022). In that work the motions of the molecules responsible for the so-called diffuse interstellar bands, and associated with the clouds, are measured from the spectra collected with Gaia’s RVS instrument. One of the figures in the paper shows the wavy pattern in the motions of the Diffuse Interstellar Band carrier.

For the stars one can also see the wavy pattern in the radial velocities and this is seen in the sky map that shows with a colour code the average radial velocity of the stars in each direction. One can clearly see the alternating colours reflecting the wavy pattern in radial velocities.

 

Technical details and video source code

The idea for the video was inspired by the work of Brunetti & Pfenniger (2010) who showed how to calculate in general how the motions of the stars in the Milky Way disk translate to observed proper motions (and radial velocities). The rotation curve used for the Milky Way disk animation, and shown above, is also taken from that paper (equation (7) with h = 3 kpc and p =− 0. 55).

The animation of the stellar motions in the disk was made with the Processing graphical library and Java code for colour coding the stars. The introductory slides for the video were made with Python, Matplotlib, and Cartopy. The video was generated with FFmpeg using a GNU Bash script.

The code to produce the video and to reproduce the analysis of the proper motions from Gaia Collaboration Creevey et al. (2020) can be found on Github.

 

Gaia's proper motions

The Gaia proper motions released with Gaia's Early Data Release 3 are also included in the full Gaia Data Release 3 published now.

Sky map of star trails. The star trails on this image show the displacement of stars on the sky 400 thousand years into the future. (Good resolution image for download, High resolution image for download) Credit: ESA/Gaia/DPAC, CC BY-SA 3.0 IGO. Published here.

 

Credits: ESA/Gaia/DPAC, Anthony Brown, Yves Frémat, Orlagh Creevey, Rosanna Sordo, Céline Reylé, Tineke Roegiers, Milky Way artist’s impression: Stefan Payne Wardenaar

Acknowledgements for the video:

  • Based on the paper by the Gaia Collaboration: Gaia Data Release 3: A Golden Sample of Astrophysical Parameters
  • Main Video/Data sets: ESA/Gaia/DPAC, Anthony Brown, Yves Frémat, Orlagh Creevey, Rosanna Sordo, Céline Reylé, Tineke Roegiers
  • Narrator: Orlagh Creevey * Ideas for video inspired by: Brunetti & Pfenniger, 2010, A&A 510, A34
  • Night sky image: ESA/Gaia/DPAC/André Moitinho, CC BY-SA 3.0 IGO
  • Milky Way image: Stefan Payne-Wardenaar
  • The video was created with Processing, Python/Matplotlib/Cartopy, FFmpeg, and GNU Bash
  • Code for this video can be found here

 

Published: 13 June 2022

Image of the Week Archive

2025

27/03: A milestone for the Gaia mission: retirement orbit and passivation

15/01: 61 Cygni marks the end of Gaia's science observation phase

2024

03/12: The Gaia ESA Archive: a first step towards Gaia Data release 4

20/08: Gaia discovers interesting duo belonging to the Milky Way halo: an ultracool subdwarf with a white dwarf companion

25/07: 10 years of Gaia science operations

23/07: How binary stars change their stellar dance with age

25/06: Dynamical masses across the Hertzsprung-Russell diagram

28/05: Did Gaia find its first neutron star?

26/04: A textbook solar eruption

22/04: Gaia's contribution to discovering distant worlds

16/04: Gaia spots Milky Way's most massive black hole of stellar origin

02/04: The Gaia Cataclysmic Variable hook

2023

19/12: 10 Science topics to celebrate Gaia's 10 years in space

31/10: Gaia observes cosmic clock inside a heavenly jewel

10/10: Gaia Focused Product Release stories

27/09: Does the Milky Way contain less dark matter than previously thought?

22/09: Mass-luminosity relation from Gaia's binary stars

13/09: Gaia DPAC CU8 seminars

13/06: Gaia's multi-dimensional Milky Way

18/05: Mapping the Milky Way

15/05: Goonhilly station steps in to save Gaia science data

25/04: The Gaia ESA Archive

05/04: Dual quasar found to be hosted by an ongoing galaxy merger at redshift 2.17

21/03: GaiaVari: a citizen science project to help Gaia variability classificaton

09/02: Missing mass in Albireo Ac: massive star or black hole?

31/01: Gaia reaches to the clouds – 3D kinematics of the LMC

25/01: Meet your neighbours: CNS5 - the fifth catalogue of nearby stars

18/01: A single-object visualisation tool for Gaia objects

2022

25/11: 100 months of Gaia data

23/11: The astonishment

09/11: Gamma-Ray Burst detection from Lagrange 2 point by Gaia

04/11: Gaia's first black hole discovery: Gaia BH1

26/10: Are Newton and Einstein in error after all?

21/10: Gaia ESA Archive goes live with third data release

06/10: Mapping the interstellar medium using the Gaia RVS spectra

26/09: Gaia on the hunt for dual quasars and gravitational lenses

23/09: Gaia's observation of relativistic deflection of light close to Jupiter

13/06: Gaia Data Release 3

10/06: MK classification of stars from BP/RP spectrophotometry across the Hertzsprung-Russell diagram

09/06: BP/RP low-resolution spectroscopy across the Hertzsprung-Russell diagram

27/05: Cepheids and their radial velocity curves

23/05: The Galaxy in your preferred colours

19/05: GaiaXPy 1.0.0 released, a tool for Gaia's BP/RP spectra users

11/05: Systemic proper motions of 73 galaxies in the Local group

28/03: Gaia query statistics

16/03: Gaia's first photo shooting of the James Webb Space Telescope

08/03: Gaia's women in science - coordination unit 8

25/02: Not only distances: what Gaia DR3 RR Lyrae stars will tell us about our Galaxy and beyond

11/02: Gaia's women in science

31/01: Astrometric orbit of the exoplanet-host star HD81040

12/01: The Local Bubble - source of our nearby stars

05/01: A Milky-Way relic of the formation of the Universe

2021

23/12: Signal-to-Noise ratio for Gaia DR3 BP/RP mean spectra

22/12: The 7 October 2021 stellar occultation by the Neptunian system

01/12: Observation of a long-predicted new type of binary star

24/09: Astrometric microlensing effect in the Gaia16aye event

22/09: the power of the third dimension - the discovery of a gigantic cavity in space

16/09: An alternative Gaia sky chart

25/08: Gaia Photometric Science Alerts and Gravitational Wave Triggers

09/07: How Gaia unveils what stars are made of

23/06: Interviews with CU3

27/04: HIP 70674 Orbital solution resulting from Gaia DR3 processing

30/03: First transiting exoplanet by Gaia

26/03: Apophis' Yarkovsky acceleration improved through stellar occultation

26/02: Matching observations to sources for Gaia DR4

2020

22/12: QSO emission lines in low-resolution BP/RP spectra

03/12: Gaia Early Data Release 3

29/10: Gaia EDR3 passbands

15/10: Star clusters are only the tip of the iceberg

04/09: Discovery of a year long superoutburst in a white dwarf binary

12/08: First calibrated XP spectra

22/07: Gaia and the size of the Solar System

16/07: Testing CDM and geometry-driven Milky Way rotation Curve Models

30/06: Gaia's impact on Solar system science

14/05: Machine-learning techniques reveal hundreds of open clusters in Gaia data

20/03: The chemical trace of Galactic stellar populations as seen by Gaia

09/01: Discovery of a new star cluster: Price-Whelan1

08/01: Largest ever seen gaseous structure in our Galaxy

2019

20/12: The lost stars of the Hyades

06/12: Do we see a dark-matter like effect in globular clusters?

12/11: Hypervelocity star ejected from a supermassive black hole

17/09: Instrument Development Award

08/08: 30th anniversary of Hipparcos

17/07: Whitehead Eclipse Avoidance Manoeuvre

28/06: Following up on Gaia Solar System Objects

19/06: News from the Gaia Archive

29/05: Spectroscopic variability of emission lines stars with Gaia

24/05: Evidence of new magnetic transitions in late-type stars

03/05: Atmospheric dynamics of AGB stars revealed by Gaia

25/04: Geographic contributions to DPAC

22/04: omega Centauri's lost stars

18/04: 53rd ESLAB symposium "the Gaia universe"

18/02: A river of stars

2018
21/12: Sonification of Gaia data
18/12: Gaia captures a rare FU Ori outburst
12/12: Changes in the DPAC Executive
26/11:New Very Low Mass dwarfs in Gaia data
19/11: Hypervelocity White Dwarfs in Gaia data
15/11: Hunting evolved carbon stars with Gaia RP spectra
13/11: Gaia catches the movement of the tiny galaxies surrounding the Milky Way
06/11: Secrets of the "wild duck" cluster revealed
12/10: 25 years since the initial GAIA proposal
09/10: 3rd Gaia DPAC Consortium Meeting
30/09: A new panoramic sky map of the Milky Way's Stellar Streams
25/09: Plausible home stars for interstellar object 'Oumuamua
11/09: Impressions from the IAU General Assembly
30/06: Asteroids in Gaia Data
14/06: Mapping and visualising Gaia DR2

25/04: In-depth stories on Gaia DR2

14/04: Gaia tops one trillion observations
16/03: Gaia DR2 Passbands
27/02: Triton observation campaign
11/02: Gaia Women In Science
29/01: Following-up on Gaia
2017
19/12: 4th launch anniversary
24/11: Gaia-GOSA service
27/10: German Gaia stamp in the making
19/10: Hertzsprung-russell diagram using Gaia DR1
05/10: Updated prediction to the Triton occultation campaign
04/10: 1:1 Gaia model arrives at ESAC
31/08: Close stellar encounters from the first Gaia data release
16/08: Preliminary view of the Gaia sky in colour
07/07: Chariklo stellar occultation follow-up
24/04: Gaia reveals the composition of asteroids
20/04: Extra-galactic observations with Gaia
10/04: How faint are the faintest Gaia stars?
24/03: Pulsating stars to study Galactic structures
09/02: Known exoplanetary transits in Gaia data
31/01: Successful second DPAC Consortium Meeting
2016
23/12: Interactive and statistical visualisation of Gaia DR1 with vaex
16/12: Standard uncertainties for the photometric data (in GDR1)
25/11: Signature of the rotation of the galactic bar uncovered
15/11: Successful first DR1 Workshop
27/10: Microlensing Follow-Up
21/10: Asteroid Occultation
16/09: First DR1 results
14/09: Pluto Stellar Occultation
15/06: Happy Birthday, DPAC!
10/06: 1000th run of the Initial Data Treatment system
04/05: Complementing Gaia observations of the densest sky regions
22/04: A window to Gaia - the focal plane
05/04: Hipparcos interactive data access tool
24/03: Gaia spots a sunspot
29/02: Gaia sees exploding stars next door
11/02: A new heart for the Gaia Object Generator
04/02: Searching for solar siblings with Gaia
28/01: Globular cluster colour-magnitude diagrams
21/01: Gaia resolving power estimated with Pluto and Charon
12/01: 100th First-Look Weekly Report
06/01: Gaia intersects a Perseid meteoroid
2015
18/12: Tales of two clusters retold by Gaia
11/11: Lunar transit temperature plots
06/11: Gaia's sensors scan a lunar transit
03/11: Celebrity comet spotted among Gaia's stars
09/10: The SB2 stars as seen by Gaia's RVS
02/10: The colour of Gaia's eyes
24/09: Estimating distances from parallaxes
18/09: Gaia orbit reconstruction
31/07: Asteroids all around
17/07: Gaia satellite and amateur astronomers spot one in a billion star
03/07: Counting stars with Gaia
01/07: Avionics Model test bench arrives at ESOC
28/05: Short period/faint magnitude Cepheids in the Large Magellanic Cloud
19/05: Visualising Gaia Photometric Science Alerts
09/04: Gaia honours Einstein by observing his cross
02/04: 1 April - First Look Scientists play practical joke
05/03: RR Lyrae stars in the Large Magellanic Cloud as seen by Gaia
26/02: First Gaia BP/RP deblended spectra
19/02: 13 months of GBOT Gaia observations
12/02: Added Value Interface Portal for Gaia
04/02: Gaia's potential for the discovery of circumbinary planets
26/01: DIBs in three hot stars as seen by Gaia's RVS
15/01: The Tycho-Gaia Astrometric Solution
06/01: Close encounters of the stellar kind
2014
12/12: Gaia detects microlensing event
05/12: Cat's Eye Nebula as seen by Gaia
01/12: BFOSC observation of Gaia at L2
24/11: Gaia spectra of six stars
13/11: Omega Centauri as seen by Gaia
02/10: RVS Data Processing
12/09: Gaia discovers first supernova
04/08: Gaia flag arrives at ESAC
29/07: Gaia handover
15/07: Eclipsing binaries
03/07: Asteroids at the "photo finish"
19/06: Calibration image III - Messier 51
05/06: First Gaia BP/RP and RVS spectra
02/06: Sky coverage of Gaia during commissioning
03/04: Gaia source detection
21/02: Sky-background false detections in the sky mapper
14/02: Gaia calibration images II
06/02: Gaia calibration image I
28/01: Gaia telescope light path
17/01: First star shines for Gaia
14/01: Radiation Campaign #4
06/01: Asteroid detection by Gaia
2013
17/12: Gaia in the gantry
12/12: The sky in G magnitude
05/12: Pre-launch release of spectrophotometric standard stars
28/11: From one to one billion pixels
21/11: The Hipparcos all-sky map
15/10: Gaia Sunshield Deployment Test
08/10: Initial Gaia Source List
17/09: CU1 Operations Workshop
11/09: Apsis
26/08: Gaia arrival in French Guiana
20/08: Gaia cartoons
11/07: Model Soyuz Fregat video
01/07: Acoustic Testing
21/06: SOVT
03/06: CU4 meeting #15
04/04: DPCC (CNES) 
26/03: Gaia artist impression 
11/02: Gaia payload testing  
04/01: Space flyby with Gaia-like data
2012
10/12: DPAC OR#2. Testing with Planck
05/11: Galaxy detection with Gaia
09/10: Plot of part of the GUMS-10 catalogue
23/07: "Gaia" meets at Gaia
29/06: The Sky as seen by Gaia
31/05: Panorama of BAM clean room
29/03: GREAT school results
12/03: Scanning-law movie
21/02: Astrometric microlensing and Gaia
03/02: BAM with PMTS
12/01: FPA with all the CCDs and WFSs
2011
14/12: Deployable sunshield
10/11: Earth Trojan search
21/10: First Soyuz liftoff from the French Guiana
20/09: Fast 2D image reconstruction algorithm
05/09: RVS OMA
10/08: 3D distribution of the Gaia catalogue
13/07: Dynamical Attitude Model
22/06: Gaia's view of open clusters
27/05: Accuracy of the stellar transverse velocity
13/05: Vibration test of BAM mirrors
18/04: L. Lindegren, Dr. Honoris Causa of the Observatory of Paris
19/01: Detectability of stars close to Jupiter
05/01: Delivery of the WFS flight models
2010
21/12: The 100th member of CU3
17/11: Nano-JASMINE and AGIS
27/10: Eclipsing binary light curves fitted with DPAC code
13/10: Gaia broad band photometry
28/09: Measuring stellar parameters and interstellar extinction
14/09: M1 mirror
27/08: Quest for the Sun's siblings
 
Please note: Entries from the period 2003-2010 are available in this PDF document.