Image of the Week

Evidence of new magnetic transitions in late-type stars with Gaia DR2



Figure 1: This diagram shows the amplitude-period density diagram of rotational modulation variables in Gaia DR2 with a projection in rotation period P (a) and a projection in rotational modulation amplitude A (b). It can be clearly seen in the projection in rotation period P (a) that there is a clustering of low-amplitude K-type stars visible for periods around 0.4 days and another clustering for low-amplitude K-type stars for periods around 5 to 10 days, thus showing a multimodality in this diagram. Image credit: A.C. Lanzafame et al. (2019, ApJ)

About 26% of the variable sources published in the Gaia Data Release 2 are rotational modulation variable candidates. These variable stars show a variation in their luminosity due to their rotation and due to surface inhomogenieties, like for example spots. The flux modulation induced by these surface inhomogenieties visible in these variables can be used to infer the stellar rotation period.

The presence of a multimodality in the rotational modulation amplitude versus rotation period diagram was outlined in the A&A Gaia data processing paper "Gaia Data Release 2: Rotational modulation in late-type dwarfs". In the paper "Evidence of New Magnetic Transitions in Late-Type Dwarfs from Gaia DR2" by A. Lanzafame et al. (2019) that was recently published in ApJ, this multimodality has been put into context by cross-matching with stars of known type and compared with data from the Kepler mission, a space mission dedicated to find transiting exoplanets. It outlines the importance of the original discovery and proposes a new scenario for the magneto-rotational evolution of stars from the Pre-Main Sequence to the late Main Sequence.

A scenario for the low-mass stellar rotational evolution after Gaia DR2. Three major clusterings are seen which correspond to high-amplitude rotator (HAR), low-amplitude fast-rotator (LAFR), and low-amplitude slow-rotator (LASR) branches. The latter clustering, the low-amplitude fast-rotator branch, contains a group of ultra-fast rotators (UFR). Image credit: A.C.Lanzafame et al. (2019, ApJ)


As can be seen in the above figure, the amplitude-period density diagram of rotational modulation variables in Gaia DR2 shows three major clusterings corresponding to high-amplitude rotator, low-amplitude fast-rotator, and low-amplitude slow-rotator branches. The low-amplitude fast-rotator branch contains a group of ultra-fast rotators.

This diagram suggests a new scenario for the magneto-rotational evolution of stars that develop a radiative core and a convective envelope on the main-sequence. Young stars are located in the high-amplitude branch and spin-up while contracting towards the zero-age main-sequence. Once they ingnite the H-burning in the radiative core, they start to spin-down and eventually undergo a rapid transition to the low-amplitude slow-rotator branch.

This new scenario thus suggests that the stars undergo a magnetic transition in their early evolution on the main sequence that leads to a sudden change of their surface appearance. The evidence points, in fact, to a sudden change of stellar surface inhomogenieties (like spots) that reduce dramatically the amplitude of the light modulation in very short timescales.

However, if the star spins-up so much to approach the breakup velocity, i.e. when the centrifugal force at the equator becomes comparable to the gravity force, the star undegoes a very rapid transition from the high-amplitude branch to the ultra-fast rotator regime. From there the star spins-down toward the low-amplitude slow-rotator branch. This latter corresponds to the unsaturated regime seen in X-rays and chromospheric activity.

This is a most unexpected and dramatic change for a star spinned-up to almost breakup velocity in their contraction towards the main sequence. These stars reduce their modulation amplitude by a factor 10 in a very short timescale, leaving a clear gap in the amplitude-period diagram.


Further reading:

Credits: A.C Lanzafame et al. (2019, ApJ)

[Published: 24/05/2019]


Image of the Week Archive

30/06: Gaia's impact on Solar system science
14/05: Machine-learning techniques reveal hundreds of open clusters in Gaia data
20/03: The chemical trace of Galactic stellar populations as seen by Gaia
09/01: Discovery of a new star cluster: Price-Whelan1
08/01: Largest ever seen gaseous structure in our Galaxy
20/12: The lost stars of the Hyades
06/12: Do we see a dark-matter like effect in globular clusters?
12/11: Hypervelocity star ejected from a supermassive black hole
17/09: Instrument Development Award
08/08: 30th anniversary of Hipparcos
17/07: Whitehead Eclipse Avoidance Manoeuvre
28/06: Following up on Gaia Solar System Objects
19/06: News from the Gaia Archive
29/05: Spectroscopic variability of emission lines stars with Gaia
24/05: Evidence of new magnetic transitions in late-type stars
03/05: Atmospheric dynamics of AGB stars revealed by Gaia
25/04: Geographic contributions to DPAC
22/04: omega Centauri's lost stars
18/04: 53rd ESLAB symposium "the Gaia universe"
18/02: A river of stars
21/12: Sonification of Gaia data
18/12: Gaia captures a rare FU Ori outburst
12/12: Changes in the DPAC Executive
26/11:New Very Low Mass dwarfs in Gaia data
19/11: Hypervelocity White Dwarfs in Gaia data
15/11: Hunting evolved carbon stars with Gaia RP spectra
13/11: Gaia catches the movement of the tiny galaxies surrounding the Milky Way
06/11: Secrets of the "wild duck" cluster revealed
12/10: 25 years since the initial GAIA proposal
09/10: 3rd Gaia DPAC Consortium Meeting
30/09: A new panoramic sky map of the Milky Way's Stellar Streams
25/09: Plausible home stars for interstellar object 'Oumuamua
11/09: Impressions from the IAU General Assembly
30/06: Asteroids in Gaia Data
14/06: Mapping and visualising Gaia DR2

25/04: In-depth stories on Gaia DR2

14/04: Gaia tops one trillion observations
16/03: Gaia DR2 Passbands
27/02: Triton observation campaign
11/02: Gaia Women In Science
29/01: Following-up on Gaia
19/12: 4th launch anniversary
24/11: Gaia-GOSA service
27/10: German Gaia stamp in the making
19/10: Hertzsprung-russell diagram using Gaia DR1
05/10: Updated prediction to the Triton occultation campaign
04/10: 1:1 Gaia model arrives at ESAC
31/08: Close stellar encounters from the first Gaia data release
16/08: Preliminary view of the Gaia sky in colour
07/07: Chariklo stellar occultation follow-up
24/04: Gaia reveals the composition of asteroids
20/04: Extra-galactic observations with Gaia
10/04: How faint are the faintest Gaia stars?
24/03: Pulsating stars to study Galactic structures
09/02: Known exoplanetary transits in Gaia data
31/01: Successful second DPAC Consortium Meeting
23/12: Interactive and statistical visualisation of Gaia DR1 with vaex
16/12: Standard uncertainties for the photometric data (in GDR1)
25/11: Signature of the rotation of the galactic bar uncovered
15/11: Successful first DR1 Workshop
27/10: Microlensing Follow-Up
21/10: Asteroid Occultation
16/09: First DR1 results
14/09: Pluto Stellar Occultation
15/06: Happy Birthday, DPAC!
10/06: 1000th run of the Initial Data Treatment system
04/05: Complementing Gaia observations of the densest sky regions
22/04: A window to Gaia - the focal plane
05/04: Hipparcos interactive data access tool
24/03: Gaia spots a sunspot
29/02: Gaia sees exploding stars next door
11/02: A new heart for the Gaia Object Generator
04/02: Searching for solar siblings with Gaia
28/01: Globular cluster colour-magnitude diagrams
21/01: Gaia resolving power estimated with Pluto and Charon
12/01: 100th First-Look Weekly Report
06/01: Gaia intersects a Perseid meteoroid
18/12: Tales of two clusters retold by Gaia
11/11: Lunar transit temperature plots
06/11: Gaia's sensors scan a lunar transit
03/11: Celebrity comet spotted among Gaia's stars
09/10: The SB2 stars as seen by Gaia's RVS
02/10: The colour of Gaia's eyes
24/09: Estimating distances from parallaxes
18/09: Gaia orbit reconstruction
31/07: Asteroids all around
17/07: Gaia satellite and amateur astronomers spot one in a billion star
03/07: Counting stars with Gaia
01/07: Avionics Model test bench arrives at ESOC
28/05: Short period/faint magnitude Cepheids in the Large Magellanic Cloud
19/05: Visualising Gaia Photometric Science Alerts
09/04: Gaia honours Einstein by observing his cross
02/04: 1 April - First Look Scientists play practical joke
05/03: RR Lyrae stars in the Large Magellanic Cloud as seen by Gaia
26/02: First Gaia BP/RP deblended spectra
19/02: 13 months of GBOT Gaia observations
12/02: Added Value Interface Portal for Gaia
04/02: Gaia's potential for the discovery of circumbinary planets
26/01: DIBs in three hot stars as seen by Gaia's RVS
15/01: The Tycho-Gaia Astrometric Solution
06/01: Close encounters of the stellar kind
12/12: Gaia detects microlensing event
05/12: Cat's Eye Nebula as seen by Gaia
01/12: BFOSC observation of Gaia at L2
24/11: Gaia spectra of six stars
13/11: Omega Centauri as seen by Gaia
02/10: RVS Data Processing
12/09: Gaia discovers first supernova
04/08: Gaia flag arrives at ESAC
29/07: Gaia handover
15/07: Eclipsing binaries
03/07: Asteroids at the "photo finish"
19/06: Calibration image III - Messier 51
05/06: First Gaia BP/RP and RVS spectra
02/06: Sky coverage of Gaia during commissioning
03/04: Gaia source detection
21/02: Sky-background false detections in the sky mapper
14/02: Gaia calibration images II
06/02: Gaia calibration image I
28/01: Gaia telescope light path
17/01: First star shines for Gaia
14/01: Radiation Campaign #4
06/01: Asteroid detection by Gaia
17/12: Gaia in the gantry
12/12: The sky in G magnitude
05/12: Pre-launch release of spectrophotometric standard stars
28/11: From one to one billion pixels
21/11: The Hipparcos all-sky map
15/10: Gaia Sunshield Deployment Test
08/10: Initial Gaia Source List
17/09: CU1 Operations Workshop
11/09: Apsis
26/08: Gaia arrival in French Guiana
20/08: Gaia cartoons
11/07: Model Soyuz Fregat video
01/07: Acoustic Testing
21/06: SOVT
03/06: CU4 meeting #15
04/04: DPCC (CNES) 
26/03: Gaia artist impression 
11/02: Gaia payload testing  
04/01: Space flyby with Gaia-like data
10/12: DPAC OR#2. Testing with Planck
05/11: Galaxy detection with Gaia
09/10: Plot of part of the GUMS-10 catalogue
23/07: "Gaia" meets at Gaia
29/06: The Sky as seen by Gaia
31/05: Panorama of BAM clean room
29/03: GREAT school results
12/03: Scanning-law movie
21/02: Astrometric microlensing and Gaia
03/02: BAM with PMTS
12/01: FPA with all the CCDs and WFSs
14/12: Deployable sunshield
10/11: Earth Trojan search
21/10: First Soyuz liftoff from the French Guiana
20/09: Fast 2D image reconstruction algorithm
05/09: RVS OMA
10/08: 3D distribution of the Gaia catalogue
13/07: Dynamical Attitude Model
22/06: Gaia's view of open clusters
27/05: Accuracy of the stellar transverse velocity
13/05: Vibration test of BAM mirrors
18/04: L. Lindegren, Dr. Honoris Causa of the Observatory of Paris
19/01: Detectability of stars close to Jupiter
05/01: Delivery of the WFS flight models
21/12: The 100th member of CU3
17/11: Nano-JASMINE and AGIS
27/10: Eclipsing binary light curves fitted with DPAC code
13/10: Gaia broad band photometry
28/09: Measuring stellar parameters and interstellar extinction
14/09: M1 mirror
27/08: Quest for the Sun's siblings
Please note: Entries from the period 2003-2010 are available in this PDF document.